

The microwave spectrum of an unstable molecule: Chloroketene CIHCCO

M. C. L. Gerry, W. LewisBevan, and N. P. C. Westwood

Citation: The Journal of Chemical Physics **79**, 4655 (1983); doi: 10.1063/1.445606 View online: http://dx.doi.org/10.1063/1.445606 View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/79/10?ver=pdfcov Published by the AIP Publishing

Articles you may be interested in

Infrared diode laser and microwave spectra and molecular structure of an unstable molecule, FBO J. Chem. Phys. **87**, 2006 (1987); 10.1063/1.453175

The submillimeterwave spectrum of the HCCO radical J. Chem. Phys. **86**, 4319 (1987); 10.1063/1.451892

The microwave spectrum of an unstable molecule, HPO J. Chem. Phys. **84**, 1157 (1986); 10.1063/1.450505

Unstable continuous spectrum in magnetohydrodynamics Phys. Fluids **22**, 1700 (1979); 10.1063/1.862805

The Methyl Alcohol Molecule and Its Microwave Spectrum J. Chem. Phys. **21**, 1804 (1953); 10.1063/1.1698668

The microwave spectrum of an unstable molecule: Chloroketene CIHCCO

M. C. L. Gerry, W. Lewis-Bevan, and N. P. C. Westwood

Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1 Y6 (Received 6 July 1983; accepted 9 August 1983)

The microwave spectra of four isotopic species of the unstable molecule chloroketene CIHCCO have been observed from the flow pyrolysis of monochloroacetyl chloride and from the pyrolytic reaction of dichloroacetyl chloride with zinc metal. The spectra, which consist only of *b*-type transitions, were observed in the frequency range 26.5–80 GHz. Accurate rotational constants and quartic and sextic centrifugal distortion constants have been obtained for all isotopes. Large numbers of perturbations have been observed in the chlorine quadrupole hyperfine structure; consequently, the complete quadrupole coupling tensor has been evaluated. The dipole moment has been measured. The molecule has been shown to be planar, and a partial r_0 structure has been determined.

INTRODUCTION

Although ketene H₂CCO has been the subject of intensive spectroscopic investigation, including its observation as an interstellar molecule,¹ little is known of its substituted derivatives. The monomethyl- and dimethylketenes have been observed by microwave and infrared spectroscopy²⁻⁵ despite their propensity for dimerization. There is, however, a paucity of data on the halogen substituted derivatives. These have been observed as reactive intermediates in solution, undergoing 1, 2cycloaddition with olefins and other unsaturated compounds,^{6,7} but it is only recently that monohalo- and dihaloketenes have been observed as discrete molecules in the gas phase using HeI photoelectron spectroscopy (UPS).^{8,9} The preparative routes described for detection by UPS parallel those used in the solution work, viz. dehydrohalogenation or dehalogenation of halosubstituted acid chlorides. Both have been used for the microwave observation of chloroketene.

EXPERIMENTAL METHODS

For the majority of the observations described here, chloroketene was prepared by direct flow pyrolysis of monochloroacetyl chloride in an 8 mm. i.d. quartz tube heated to 700 $^{\circ}$ C over about 10 cm of its length. The dehydrochlorination may be represented by the equation

$$H - C = C = O + HC1 .$$
(1)

Decomposition of the starting material begins at ~500 $^\circ C$ and is complete at 700 $^\circ C$.

In the other preparation, dichloroacetyl chloride was passed over zinc at 300°C. The equation for this is

$$\begin{array}{c} H & O \\ Cl - C & C \\ Cl & Cl \\ Cl & Cl \\ \end{array} + Zn \quad \underbrace{300 \,^{\circ}C}_{H} \quad C = C = O + ZnCl_2 \ . \quad (2)$$

This method has the advantage that a lower temperature is used, and that the only gaseous product is the desired chloroketene. Its disadvantage is that the zinc is relatively easily poisoned, and often has to be replaced.

Deuterated chloroketene was prepared by pyrolysis of monochloroacetylchloride- d_2 ; the latter was prepared from monochloroacetic acid- d_3 (MSD isotopes) by treatment with PCl₃.

The effluent from the pyrolysis zone was pumped continuously through a 2 m copper X band cell of a conventional 100 kHz Stark modulated spectrometer at a typical pressure of 30 mTorr. HCl was not observed in the frequency range used in this work. All observed lines in the microwave spectrum could be ascribed to chloroketene.

Microwave spectra were obtained for four isotopic species: ³⁵ClHCCO, ³⁷ClHCCO, ³⁵ClDCCO, and ³⁷ClDCCO. They were measured in the frequency regions 26.5-40 and 53-80 GHz. For the former the source was a backward wave oscillator contained in a Hewlett Packard 8400 C microwave spectroscopy source. Frequency doubling using a Space Kom DV-1 doubler permitted extension to the upper range. Estimated measurement accuracies are ~±0.05 MHz below 40 GHz and ~±0.1 MHz above 53 GHz.

OBSERVED SPECTRUM AND ASSIGNMENT

A preliminary calculation of rotational constants using structural data transferred from vinyl chloride¹⁰ and methylketene³ was used as the basis for prediction of a rigid rotor spectrum for ³⁵ClHCCO. Predicted values for the chlorine nuclear quadrupole coupling constants χ_{aa} and $\chi_{bb} - \chi_{cc}$ were calculated from the equations of Townes and Dailey¹¹ using chlorine atomic charges derived from a minimal basis (STO-3G) *ab initio* calculation (GAUSSIAN 70).¹²

The molecule was expected to be a planar near symmetric prolate rotor, probably having both a- and b-type transitions. Surprisingly, no obvious a-type R branches were found. Instead a set of b-type Q-branch transitions $(J_{1,J-1} - J_{0,J})$ was quickly identified from its chlorine quadrupole hyperfine patterns, and gave two linear combinations of the rotational constants. To separate the

rotational constants an assignment of P and R branches was required; the first transitions to be identified, also from their hyperfine patterns, were of the type $J_{-1_{2,J-3}}$ $J_{1,J}$. Once they had been found, and accurate quadrupole coupling constants had been determined, further Pand R branches were readily identified and a large number of transitions were assigned by the usual bootstrap procedure, including both rotational constants and centrifugal distortion constants. All observed transitions were b type. The frequency fit was the chief criterion for assignment, confirmed always by the hyperfine structure. For this isotope 58 rotational transitions up to J= 74 were assigned and measured.

A minor refinement of the ³⁵ClHCCO structural parameters permitted the ³⁷ClHCCO, ³⁵ClDCCO, and ³⁷ClDCCO rotational constants and line frequencies to be predicted with sufficient accuracy to provide a ready analysis of their observed spectra. For the latter three isotopes, 56, 31, and 38 rotational transitions, respectively, were fitted.

ANALYSIS OF THE SPECTRA

Rotational constants and centrifugal distortion constants

To obtain the rotational and centrifugal distortion constants of chloroketene, it was first necessary to account for the hyperfine structure using the chlorine nuclear quadrupole coupling constants obtained as described below. The hypothetical unsplit frequencies were then analyzed using Watson's A-reduction Hamiltonian in the I^r representation¹³:

$$\mathcal{K} = \mathcal{K}_{R} + \mathcal{K}_{D} , \qquad (3)$$

$$\mathscr{H}_{R} = \frac{1}{2} \left(B + C \right) J^{2} + \left[A - \frac{1}{2} \left(B + C \right) \right] J^{2}_{a} + \frac{1}{2} \left(B - C \right) \left(J^{2}_{b} - J^{2}_{c} \right) ,$$
(4)

$$\Im \mathcal{C}_{D} = -\Delta_{J} J^{4} - \Delta_{JK} J^{2} J_{a}^{2} - \Delta_{K} J_{a}^{4} - 2\delta_{J} J^{2} (J_{b}^{2} - J_{c}^{2}) - \delta_{k} [J_{a}^{2} (J_{b}^{2} - J_{c}^{2}) + (J_{b}^{2} - J_{c}^{2}) J_{a}^{2}] + H_{J} J^{6} + H_{JK} J^{4} J_{a}^{2} + H_{KJ} J^{2} J_{a}^{4} + H_{KJ} J^{2} J_{a}^{4} + H_{KJ} J^{2} J_{a}^{2} + H_{KJ} J^{2} J$$

To account for the observed spectra, rotational constants and both quartic and sextic distortion constants were required. Meaningful values could be obtained for all rotational and quartic constants, but for only a partial set of sextic constants. In particular H_{JK} and h_K could not be obtained from the present data, and were constrained to zero. For ³⁵ClDCCO, h_J was also constrained to zero, for the same reason. The derived constants are in Table I. The unsplit line frequencies of the observed transitions are in Table II for the four different isotopes, along with the differences between the observed frequencies and those calculated from the derived constants.

The chlorine quadrupole coupling tensor

For a planar molecule containing a single quadrupolar nucleus the quadrupole Hamiltonian can be written as follows:

$$\mathcal{H}_{\mathbf{Q}} = \chi_{aa} \phi_{\mathbf{Z}a}^2 + \chi_{bb} \phi_{\mathbf{Z}b}^2 + \chi_{cc} \phi_{\mathbf{Z}c}^2 + 2\chi_{ab} \phi_{\mathbf{Z}a} \phi_{\mathbf{Z}b} , \qquad (6)$$

where $\chi_{f_{\ell}}$ is a quadrupole coupling constant and $\phi_{Z_{\ell}}$ is the direction cosine between the space-fixed Z axis and the *g*-principal inertial axis. For most chlorine containing molecules the first three terms, being the only ones to contribute to first order, are sufficient to account for the hyperfine structure. This is the case for most of the transitions of chloroketene.

For several transitions of the various isotopes, however, first order theory cannot account for the quadrupole structure.¹⁴ The most obvious of these are the ³⁵ClHCCO Q branches $5_{14} \pm 5_{05}$ and $6_{15} \pm 6_{06}$, depicted in Figs. 1(b) and 2(b), respectively. First order theory requires that the splittings of the upper and lower frequency pairs of strong lines of a given transition be equal; in the present case these splittings are clearly unequal. Though similar phenomena have been observed in other spectra,¹⁵ this is to the authors' knowledge one of the largest discrepancies observed in a chlorine-containing molecule.

The unequal splittings of these two transitions arise because the contribution of the fourth term of Eq. (6) is significant. The constant χ_{ab} is large (see below). There is, furthermore, a near degeneracy (273.92 MHz) calculated from the rotational and centrifugal distortion constants between the levels 5_{14} and 6_{06} , which can be connected by the term $\phi_{Za}\phi_{Zb}$. The quadrupole energies are now best calculated by diagonalizing the complete Hamiltonian. The result is a shift of some of the hyperfine levels, as is depicted in Figs. 1(a) and 2(a). The effects on the transitions are shown in Figs. 1(b) and 2(b), in which the observed quadrupole structure is given in comparison with calculated first order and exact hyperfine patterns. There is also a small difference in the relative intensities of the hyperfine components in the two cases. The calculated intensities in Figs. 1(b) and 2(b) are the first order values; there is clearly a difference between these and the observed intensities, especially for the weak components.

Similar anomalies have been observed for several other transitions. For ³⁵ClHCCO the same near degeneracy described above also causes distortion of $7_{17} - 6_{06}$. In addition for this isotope, $14_{2,12} - 15_{1,15}$ is also weakly perturbed, by the near degeneracy of $14_{2,12}$ and $15_{1,14}$ (1193.51 MHz apart). In ³⁵ClDCCO there are two relevant near degeneracies: (i) 4_{13} and 5_{05} (956.50 MHz apart), which results in anomalies in $4_{13} - 4_{04}$ and 5_{14}

This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 129 120 242 61 On: Sat. 29 Nov 2014 05:12:02

TA1	BLE	I.	Spectroscopic	constants	of	chloroketene.
-----	-----	----	---------------	-----------	----	---------------

Parameter	³⁵ CIHCCO	³⁷ C1HCCO	³⁵ C1HCCO	³⁷ C1HCCO
Rotational constants (M)	Hz)		**********	
Α	36 159, 4073(99) ^a	35 952, 857 2(113)	29200.4729(176)	29 030. 7506 (129)
В	3021.8447(10)	2951.9297(11)	3 022, 740 8(27)	2 952,8806(17)
с	2784.9385(10)	2724,2597(11)	2735.4400(25)	2676.6541(17)
Centrifugal distortion c	onstants (quartic in kH	z, sextic in Hz)		
Δr	1,5441(21)	1,4947(23)	1.495(18)	1,4437(84)
Δ_{IK}	-105,201(69)	- 102, 402(64)	-72.27(41)	-70.42(21)
Δ_r	2737.1(11)	2702.05(98)	1410,5(39)	1389.0(21)
δŢ	0,29029(9)	0,27502(14)	0,31433(95)	0.30107(47)
δ _K	8,252(32)	7,782(90)	7,27(21)	6.75(18)
H _r	0,006 29(16)	0.00634(28)	0.006 9(31)	0.0062(13)
HJK	0 p	0 p	0 b	0 p
HRI	-24,65(55)	- 20, 92(58)	-16, 1(56)	-9.3(25)
H _K	841. (23)	694.(21)	477. (150)	217. (73)
h,	0,00144(3)	0,00142(8)	0 p	0.00159(31)
har	0,153(18)	0,102(38)	0.28(16)	0,14(12)
h _K	0 p	0 _p	0 p	0 p
Chlorine nuclear quadru	pole coupling constant	s (MHz)		
Xaa	-47,321(38)	-37,789(72)	-47,904(67)	- 37, 39(83)
$\chi_{bb} - \chi_{cc}$	- 39, 052(72)	- 30, 257(152)	- 38, 792(90)	-30.42(13)
Xab	- 56, 18(65)	-40^{d}	-60.53(194)	-40.15(306)
Total number of			,	
rotational transitions	58	56	31	38
Standard deviation of distortion fit (MHz)	0.036	0.037	0.047	0.031

^aNumbers in parentheses are one standard deviation in units of the last significant figures.

^bConstrained to zero.

 $^{o}\mathrm{The}$ fits yield only $\mid \chi_{ab} \mid$. The sign was deduced using structural considerations.

^dThis value was fixed in the least squares fits.

FIG. 1. The $5_{14}-5_{05}$ transitions of ³⁵ClHCCO with associated energy levels. (a) The energy levels: (i) The hypothetical unsplit rotational energies; (ii) The chlorine quadrupole energy levels as derived from first order theory, with the unperturbed transitions of (b); (iii) The chlorine quadrupole energy levels as derived from an exact Hamiltonian, with the perturbed transitions of (b). (b) The observed transitions with the calculated first order and exact Hamiltonian patterns.

J. Chem. Phys., Vol. 79, No. 10, 15 November 1983

TABLE II. Observed transition frequencies (in MHz), with hyperfine structure removed, of chloroketene.

			³⁷ CIHCCO	
Transition	Frequency	Residual	9 _{1.8} -9 _{0.9}	38534.760
3°CIHCCO			$9_{2,8} - 10_{1,9}$	36 403.760
$1_{1,1} - 0_{0,0}$	38 941.840	0.009	$10_{0,10} - 9_{1,9}$	28 264.880
1 _{1,0} -1 _{0,1}	33 371.920	-0.005	$10_{2,9} - 11_{1,10}$	29520.590
$2_{1,1}-2_{0,2}$	33610.530	0.055	$11_{0,11} - 10_{1,10}$	34 864.360
$3_{1,2} - 3_{0,3}$	33 970.690	0.038	$12_{2,10} - 13_{1,13}$	37 279.380
41,3-40,4	34 400.000	0.028	$13_{2,11} - 14_{1,14}$	33678,190
$5_{1,4} - 5_{0,5}$	30 008.120	0.049	$14_{2,12} - 15_{1,15}$	30 301,990
$0_{1,5} - 0_{0,6}$	36697 580	-0.009	$10_{2,13} - 10_{1,16}$	27 103.030 59 569 490
1,6 ⁻¹ 0,7 84 m ⁻⁸	37726 230	-0.054	$19_{1,18} - 19_{0,18}$	29023 680
94 9-90 0	38 906 730	-0.004	$21_{1,18} - 22_{1,17}$	32392 890
$9_{2} - 10_{1}$	35 275, 120	-0.018	$22_{1,9}$ $-22_{2,20}$	70 011,090
$10_{2,0} - 11_{1,10}$	28 213, 720	-0.038	23_{2} 32_{-} 24_{-} 32_{-}	34 665, 600
$10_{0,10} - 9_{1,0}$	29598.700	0.035	263,20 $242,23242,25$	29977.810
$11_{0,11} - 10_{1,10}$	36 358, 390	-0.012	30_{2} $_{28}$ 29_{3} $_{27}$	28412.680
$12_{2,10} - 13_{1,13}$	36 531.140	-0.037	31_{2}^{2}	36650.010
$13_{2,11} - 14_{1,14}$	32900.210	-0.033	$33_{4,29} - 34_{3,32}$	38787.080
$16_{3,13} - 17_{2,16}$	68887.750	0.066	$33_{4,30} - 34_{3,31}$	30549.790
$18_{3,15} - 19_{2,18}$	58097.870	-0.038	$34_{2,32} - 33_{3,31}$	62106.800
$19_{1,18} - 18_{2,17}$	31871.700	0.054	35 _{4,31} -36 _{3,34}	28001.160
$20_{1,19} - 20_{0,20}$	64343.150	0.027	$39_{5,34} - 40_{4,37}$	68657.480
20 _{3,18} -21 _{2,19}	36788.970	-0.052	$40_{5,35} - 41_{4,38}$	62866.300
$21_{3,19} - 22_{2,20}$	29626.110	-0.045	$40_{5,36} - 41_{4,37}$	60835.600
22 _{3,19} -23 _{2,22}	37 533.320	0.012	$41_{5,37} - 42_{4,38}$	54636.180
$23_{3,20} - 24_{2,23}$	32663.040	0.007	$42_{3,39} - 41_{4,38}$	28611.600
$24_{3,21} - 25_{2,24}$	27 924.230	- 0.001	433,40-424,39	36 732. 930
$30_{2,28} - 29_{3,27}$	33135.390	-0.057	44 _{5,40} -45 _{4,41}	35636.220
324,29-333,30	33 285,630	0.016	$45_{5,40} - 46_{4,43}$	34 018.820
334,29-343,32	35453.440	0.015	$40_{5,41} - 40_{4,42}$	29147.020
$34_{2,32} - 35_{1,35}$	28 963. 990	0.003	$40_{5,41} - 47_{4,44}$	28 293.240
35	29 940,010	-0.021		32100 950
$36_{2,33} - 30_{1,36}$	36 567 560	-0.003	5051	71 504 540
38: 0-39. 05	68 893, 300	0.003	510 10-52- 17	64 723, 160
$40_{5,34} - 41_{4,35}$	58 635, 580	0.012	510,40 50,47	38 809, 940
$41_{2,22} - 40_{4,27}$	26846.980	-0.022	$52_{64} - 53_{54}$	59795.640
$42_{3,39} - 41_{4,38}$	35114.100	-0.032	544 50-535 49	26656.740
435.39-444.40	36898.980	0.025	55 ₄₋₅₁ 54 ₅₋₅₀	34 237.380
$44_{5,40} - 45_{4,41}$	30 274.280	-0.010	$56_{6.51} - 57_{5.52}$	34 096.400
445 39-454 42	35023,210	0.037	56 _{6,50} -57 _{5,53}	36 318.250
$45_{5,40} - 46_{4,43}$	29158,980	0.012	57 _{6,51} -58 _{5,54}	30444.460
473,45-464,42	28180.020	-0,006	57 _{6,52} -58 _{5,53}	27 828.330
$48_{3,46} - 47_{4,43}$	31 987,960	-0.008	58 _{4,55} -57 _{5,52}	31839.070
493,47-484,44	35570.850	-0.024	59 _{4,56} -58 _{5,53}	36 861.070
$50_{3,48} - 49_{4,45}$	38913.240	-0.023	$61_{7,54} - 62_{6,57}$	75 082.640
$51_{6,45} - 52_{5,48}$	60132.060	-0.036	$61_{7,55}-62_{6,56}$	74751.540
$51_{6,46} - 52_{5,47}$	59022,360	-0.047	62 _{7,56} -63 _{6,57}	68 840.040 69 910 900
004,49 ⁻⁰² 5,48	26738.940	-0.015	64 65	57 535 900
55 56	34433.700	0.035	6465	56 969 400
55, 56	33 859 400	-0.012	047,58-006,59	50 505. 100
56 50 - 50 5, 51	30 085, 230	0.012	³⁵ CIDCCO	
56	27182.530	0.052	$1_{1,1} - 0_{0,0}$	31 934.580
$56_{8,51} - 57_{5,50}$	27441,060	-0.001	$2_{1,1}-2_{0,2}$	26 753.710
574.54-565.51	32426,730	0.061	$z_{1,2} - 1_{0,1}$	37405,900
627,55-636.58	62475.920	0.020	$3_{1,2}-3_{0,3}$	27 192.910 27 786 730
634,60-625.57	61244.080	-0.033	*1,3^{-*}0,4	29467.330
65 _{4,62} -64 _{5,59}	69545.720	0.032	7 8	38430.590
74 _{5,70} -73 _{6,67}	68872.560	-0.017	12,5 - 1,8 8. $3 - 8.5$	31 869, 880
³⁷ CIHCCO			$9_{2} - 10_{1} + 0$	30 209. 270
$1_{1,1} - 0_{0,0}$	38674.550	-0.081	$9_{0.9} - 8_{1.8}$	30 003, 470
41.3-40.4	34 266.750	0.050	9 _{1.8} -9 _{0.9}	33371.230
$5_{1,5} - 4_{0,4}$	59797.720	-0.010	10 _{0,10} -9 _{1,9}	36734.460
$7_{1,6} - 7_{0,7}$	36418,120	-0.013	$10_{1,9} - 10_{0,10}$	35090.260
81,7-80,8	37404.030	-0.026	$11_{1,10} - 11_{0,11}$	37 040.930

TABLE II (Continued)

Transition

Residual^a

-0.036

-0.005 -0.0060.012 0.055 -0.025 0.005 -0.014-0.051-0.0110.047 0.007 0.044 -0.010 0.009 0.022 -0.000 0.038 0.043 -0.0030.015 -0.037 0.043 0.069 -0.038-0.0220.042 0.027 0.042 0.012 -0.023-0.043 -0.025 -0.042-0.0540.016 0.025 0.023 0.001 -0.003-0.0460.013 -0.033 0.034 -0.031-0.0320.026 0.004 0.013 -0.0110.045

 $\begin{array}{c} -\ 0.\ 077\\ 0.\ 056\\ 0.\ 077\\ 0.\ 021\\ 0.\ 038\\ -\ 0.\ 013\\ -\ 0.\ 031\\ -\ 0.\ 061\end{array}$

 $\begin{array}{c} 0.025 \\ -0.032 \\ -0.035 \\ -0.012 \\ -0.018 \end{array}$

0.026

Frequency

J. Chem. Phys., Vol. 79, No. 10, 15 November 1983

This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP

TABLE II (Continued)

Transition	Frequency	Residual ^a
³⁵ CIDCCO		
$15_{3,13} - 16_{2,14}$	34466.630	-0.007
$16_{3,13} - 17_{2,16}$	36 293.340	-0.019
$16_{1.15} - 15_{2.14}$	31573.150	0.058
$17_{3,14} - 18_{2,17}$	31234.870	0.042
$24_{4,21} - 25_{3,22}$	35336.240	0.006
242,22-233,21	26455.720	-0.067
$25_{4,21} - 26_{3,24}$	34 040.020	0.000
25 _{2,23} -24 _{3,22}	34881.380	0.039
254,22-263,23	28602.370	-0.023
33 _{5,28} -34 _{4,31}	38415.760	-0.014
33 _{5,29} -34 _{4,30}	36 075.500	0.043
34 _{5,29} -35 _{4,32}	32 500, 940	-0.012
$34_{3,31} - 33_{4,30}$	31743.710	-0.002
345,30-304,31	25 501. 210	-0.030
39	29414 710	0.022
40	32 901 980	-0.011
³⁷ CIDCCO	01001.000	01011
1, 1-0, 0	31706.180	0.014
41	27 623.880	0.044
5_{1} -5_{0} 5	28348.790	-0.032
$6_{15} - 6_{0.6}$	29236.420	-0.025
$7_{1,6} - 7_{0,7}$	30296.040	-0.048
8 _{2.6} -9 _{1.9}	34750.640	0.003
81.7-80.8	31538.400	-0.029
$9_{2,7} - 10_{1,10}$	30 808.750	-0.036
90,9-81,8	28799.310	-0.005
91,8-90,9	32 975.200	-0.045
$10_{0,10} - 9_{1,9}$	35 374.390	0.025
$10_{1,9} - 10_{0,10}$	34619.130	-0.019
$11_{1,10} - 11_{0,11}$	36483.280	0.032
$12_{1,11} - 12_{0,12}$	38580.770	0.054
$16_{3,14} - 17_{2,15}$	29576.210	0.000
$16_{3,13} - 17_{2,16}$	37763.210	0.006
$16_{1,15} - 15_{2,14}$	29161.830	-0.019
$17_{1,16} - 16_{2,15}$	30 857.080	0.036
$17_{3,14} - 18_{2,17}$	34781.740 97.094 970	0.009
$10_{3,15} - 19_{2,18}$	38238 430	-0.004
$24_{4,21} - 25_{3,22}$	36610 480	0.031
$25_{4,21} - 20_{3,24}$	30 883 600	0.003
25, 00-260 00	31718.620	0.001
$26_{4,22} - 27_{2,25}$	31 118.240	0.002
345 29-354 39	36197.410	-0.024
345 30-354 31	33660,030	-0.004
355.30-364.33	30421.520	-0.021
353.32-344.31	34622.920	-0.022
355,31-364.32	27 276.810	-0.023
393,37-384,34	26 520.640	-0.033
$40_{3,38} - 39_{4,35}$	30122.410	0.015
423,40-414,37	36 458. 590	0.007
$43_{6,37} - 44_{5,40}$	36486.060	-0.002
436,38-445,39	35277.020	0.002
44 _{6,39} -45 _{5,40}	29080.170	0.020
$44_{4,40} - 43_{5,39}$	28497.210	0.012

^aObserved frequency minus the frequency calculated using the constants in Table I.

- 5_{05} , and (ii) 7_{16} and 5_{24} (134.11 MHz apart), resulting in a weak perturbation of $7_{16} - 7_{07}$. For ³⁷ClDCCO the levels 5_{05} and 4_{13} (479.52 MHz apart) are similarly affected, resulting in anomalies in the transitions $4_{13} - 4_{04}$ and $5_{14} - 5_{05}$. Although unobserved because of overlapping lines, perturbations of $5_{14} - 5_{05}$ and $6_{15} - 6_{06}$ of ³⁷ClHCCO can be expected because 5_{14} and 6_{06} are 840.14 MHz apart.

Because so many perturbations have been observed, the quadrupole coupling constants have been evaluated by least squares fits using the exact quadrupole Hamiltonian. The matrix elements of Benz, Bauder, and Gunthard¹⁶ were used in a computer program written especially for this purpose. The program also permits simultaneous fitting to the rotational and centrifugal distortion constants through Eqs. (3), (4), and (5). In the present case, however, to save computer time, the rotational and centrifugal distortion constants were fixed to the values already obtained, and the quadrupole fits were made to χ_{aa} , $(\chi_{bb} - \chi_{cc})$, and χ_{ab} . Since perturbations were observed for three of the four isotopic species such fits were done for these isotopes; for the fourth (³⁷C1HCCO) χ_{ab} was estimated from the derived geometry, and then held fixed in the fit. The values of the coupling constants are given in Table I.

The quality of the full matrix fits is demonstrated in Table III, which gives the measured frequencies of several transitions, both perturbed and unperturbed, of ³⁵CIHCCO. These frequencies were also calculated using the derived constants (in Table I) by two methods: one in which χ_{ab} was set to zero (equivalent in this case to a first order calculation), and the other in which its value in Table I was used. The residuals (observed-calculated values) are in Table III, and show clearly that the second calculation accounts better for the data. They also indicate the magnitude and location of the significant contributions of χ_{ab} to the hyperfine structure.

THE STRUCTURE OF CHLOROKETENE

The rotational constants were used to obtain structural information about chloroketene. The deductions were made using the principal moments of inertia derived from Watson's "determinable" parameters¹³; these are given in Table IV. This table also contains the inertial defects of the various isotopes, which are clearly small positive numbers, with little variation with isotopic species. The planarity of the molecule is thus confirmed.

Several attempts were made to evaluate the bond lengths and angles. It became clear fairly quickly that although we have available eight independent rotational constants a definitive structure cannot be obtained from our data. Any reasonable model structure shows both atoms of the CH bond near the *b* axis, and the other C atom near the *a* axis (see Fig. 3). The problem is underlined by the changes in the rotational constant *B* on deuteration; these changes are small and positive, and are hence dominated by vibrational effects. This molecule is almost a textbook case of what can go wrong in a structural study!

Nevertheless, some structural information can be obtained. Of the several options open for using the rotational constants for this purpose, we have chosen the following as perhaps the most reasonable. Both coordinates of Cl and the *b* coordinate of H, in ³⁵ClHCCO, were obtained using the substitution method.¹⁷ The *a*

FIG. 2. The $6_{16}-6_{06}$ transitions of ³⁵ClHCCO with associated energy levels. (a) The energy levels: (i) The hypothetical unsplit rotational energies; (ii) The chlorine quadrupole energy levels as derived from first order theory, with the unperturbed transitions of (b)—note the omission of the 13/2-11/2 transition in the observed spectrum (dashed line); (iii) The chlorine quadrupole energy levels as derived from an exact Hamiltonian, with the perturbed transitions of (b). (b) The observed transitions with the calculated first order and exact Hamiltonian patterns.

coordinate of H was evaluated in several ways. It was, in one case, taken to be zero. In another it was evaluated using the "double substitution" method of Krisher and Pierce¹⁸; this method, which requires four isotopic species and accurate rotational constants, has been found to give good coordinates in a number of earlier cases, ^{11,18,19} but has the disadvantage that the sign of the coordinate is unavailable. Values of the C=Cand C=O lengths were then assumed from ketene²⁰ and methylketene, 2,3 and, using the various *a* coordinates of H, several different structures were obtained by least squares fits to the observed rotational constants. The CCO angle was fixed in the fits, and was taken to be linear, or bent up to 8° away from the Cl atom, as is found in isoelectronic CINCO.¹⁹ The fits were made to three parameters, chosen to be r(C-C1), and the angles between the b axis and the CCl and C=C bonds $[\angle (C1-C-b) \text{ and } \angle (C=C-b), \text{ respectively}].$ Some resulting structures are given in Table IV.

Although it is clear from Table IV that no definite structure can be derived from our present data, some useful observations can nevertheless be made. The derived parameters $[r(C-Cl), \angle (Cl-C-b), \angle (C=C-b)]$ are relatively independent of the assumed C=C and C=O lengths, although they depend fairly strongly on the CCO angle. It seems likely, though, that if the CCO chain is bent this bend is no more than 1° or 2°, because anything larger requires an unacceptably short CH bond (structures IV and V). Plausible CCl bond lengths are obtained in all cases. The angle between the CCl bond and the b axis $[\angle (Cl-C-b)]$ is surprisingly constant, within 0.4°, in all cases. The HCC and HCCl angles are essentially indeterminate, with reasonable structures being obtained whether $a_{\rm H} = 0$ or ± 0.0745 Å; probably a value of 127° is too big for \angle HCCl (structure III), however.

Table V shows a comparison of structures I, II, and VI with those of ketene and methylketene. Clearly all three are reasonable. Any distinction between them cannot be made without further experimental data, such as rotational constants for ¹³C and/or ¹⁸O-containing species.

THE DIPOLE MOMENT

The failure to observe a-type transitions was at first surprising, for initial calculations using GAUSSIAN 70

FIG. 3. The atoms of ClHCCO in its principal inertial axis system following structure II (Table IV). At the right the two most likely directions of the dipole moment μ_t are given.

TABLE III.	Observed	hyperfine	structure	(in	MHz)	in	the
microwave a	pectrum o	f ³⁵ ClHCC	0.				

TABLE III (Continued)

			Resi	duals_
Transition	F'-F''	Observed frequency	χ <i>ab</i> omitted ²	χ <i>ab</i> included ^b
1 _{1,1} -0 _{0,0}	1/2-3/2 3/2-3/2 5/2-3/2	38 940.820 38 942.630 38 941.640	0.028 -0.024 0.016	0.019 - 0.041 - 0.008
1 _{1,0} -1 _{0,1}	5/2-5.2 3/2-1/2 1/2-3/2 3/2-5/2 5/2-3/2	33 367.420 33 368.750 33 370.630 33 378.280 33 379.240	0.022 0.023 0.040 0.084 0.014	0.012 0.009 0.023 0.078 0.008
2 _{1,1} -2 _{0,2}	7/2-7/2 5/2-5/2	$33607.430\ 33618.270$	0.050 0.052	0.039 0.047
3 _{1,2} -3 _{0,3}	3/2-3/2 9/2-9/2 5/2-5/2 7/2-7/2	33 964.360 33 968.010 33 972.300 33 975.980	0.033 - 0.004 0.064 0.048	$\begin{array}{c} 0.007 \\ -0.019 \\ 0.020 \\ 0.040 \end{array}$
4 _{1,3} -4 _{0,4}	5/2-5/2 11/2-11/2 7/2-7/2 9/2-9/2	34 450.480 34 452.850 34 457.230 34 459.580	0.050 0.045 0.019 -0.011	0.036 0.019 -0.003 -0.024
5 _{1,4} -5 _{0,5}	$\begin{array}{c} 9/2-7/2\\ 11/2-13/2\\ 7/2-7/2\\ 13/2-13/2\\ 11/2-9/2\\ 9/2-9/2\\ 11/2-11/2\\ 9/2-11/2\\ 7/2-9/2 \end{array}$	35 058, 830 35 059, 920 35 063, 950 35 066, 090 35 068, 570 35 070, 780 35 071, 970 35 074, 280 35 075, 940	0.744 0.069 0.048 0.426 0.056 0.623 0.047 0.714 - 0.032	$\begin{array}{c} 0.065\\ 0.018\\ 0.016\\ - 0.011\\ 0.013\\ - 0.020\\ - 0.019\\ 0.049\\ - 0.029\end{array}$
6 _{1,5} -6 _{0,6}	13/2-11/2 9/2-9/2 15/2-15/2 11/2-11/2 13/2-13/2	35 078.160 35 810.510 35 811.280 35 815.860 35 817.680	$\begin{array}{c} 0.425 \\ 0.635 \\ -0.011 \\ -0.010 \\ 0.392 \\ 0.220 \end{array}$	$\begin{array}{r} -0.028 \\ -0.010 \\ 0.012 \\ -0.017 \\ -0.038 \\ 0.057 \end{array}$
7 _{1,6} -7 _{0,7}	11/2-13/2 $11/2-11/2$ $17/2-17/2$ $13/2-13/2$ $15/2-15/2$	36 694.000 36 695.190 36 699.820 36 700.990	$\begin{array}{r} 0.339 \\ -0.030 \\ -0.034 \\ -0.084 \\ -0.110 \end{array}$	-0.057 0.005 -0.025 -0.060 -0.081
7 _{1,7} —6 _{0,6}	15/2 - 13/2 $13/2 - 11/2$ $17/2 - 15/2$ $11/2 - 9/2$	70 640.840 70 640.840 70 644.360 70 645.380	$\begin{array}{c} 0.464 \\ 0.049 \\ -0.020 \\ 0.583 \end{array}$	$\begin{array}{c} 0.031 \\ 0.005 \\ -0.019 \\ -0.056 \end{array}$
8 _{1,7} -8 _{0,8}	13/2-13/2 19/2-19/2 15/2-15/2 17/2-17/2	37 722. 740 37 723. 810 37 728. 560 37 729. 580	-0.044 -0.017 -0.058 -0.082	- 0.024 - 0.012 - 0.038 - 0.067
9 _{1,8} -9 _{0,9}	15/2-15/2 21/2-21/2 17/2-17/2 19/2-19/2	38 903.290 38 904.160 38 909.170 38 910.090	-0.004 -0.067 0.027 0.014	- 0.003 - 0.064 0.027 0.025
9 _{2,8} -10 _{1,9}	19/2-21/2 17/2-19/2 21/2-23/2 15/2-17/2	35 273.110 35 273.770 35 276.570 35 277.200	0.016 0.011 -0.026 -0.062	0.015 0.005 -0.030 -0.058
10 _{0,10} —9 _{1,9}	17/2-15/2 23/2-21/2 19/2-17/2 21/2-19/2	29596.430 29597.150 29600.140 29600.880	0.080 0.006 0.055 0.002	0.063 0.004 0.050 - 0.005

			Resid	tuals
Transition	F'-F''	Observed frequency	χ <i>ab</i> omitted [®]	χ <i>ab</i> included ^b
142,12-151,15	25/2-27/2	29503.070	-0.024	- 0.023
	31/2 - 33/2	29503.770	0.029	-0.047
	27/2 - 29/2	29510.440	0.010	-0.065
	29/2 - 31/2	29510.980	-0.097	-0.097
$13_{2,11} - 14_{1,14}$	23/2 - 25/2	32896.320	0.021	0.020
	29/2 - 31/2	32896,960	-0.008	-0.022
	25/2 - 27/2	32 903.390	-0.089	-0.094
	27/2-29/2	32904.080	-0.068	-0.067
12, 11-13, 13	21/2 - 23/2	36 527, 270	-0.007	-0.009
2,11 1,10	27/2 - 29/2	36 527.960	-0.016	-0.024
	23/2 - 25/2	36 534.280	-0.054	-0.055
	25/2-27/2	36 534, 970	-0.063	- 0.062

^aObserved frequency minus the frequency calculated using the first three terms of Eq. (6). This is equivalent in this case to a first order calculation.

^bObserved frequency minus the frequency calculated using all four terms of Eq. (6).

predicted a significant μ_a component. To confirm that μ_a is indeed small, the dipole moment of ³⁵ClHCCO was evaluated by measurement of the Stark shifts under an applied field. The transitions $1_{11} - 0_{00}$ (M = 0) and $4_{13} - 4_{04}$ (M = 3 and 4) were used for the purpose, since their Stark effects were predicted to give good separation of μ_a and μ_b . The cell was calibrated using OCS, and Muenter's value for its dipole moment.²¹

Although the M=0 component of $1_{11} - 0_{00}$ was easily measured at several fields, the M=3 and 4 components of $4_{13} - 4_{04}$ could be resolved and measured only with difficulty, because of unresolved quadrupole splitting and interference by neighboring lines. The result was reduced accuracy in the measured values of μ_a and μ_b . The resulting values are $\mu_a = 0.3 \pm 0.2$, $\mu_b = 1.1 \pm 0.1$, and $\mu_{\text{total}} = 1.2 \pm 0.2$ D.

DISCUSSION AND CONCLUSIONS

Aside from the UPS studies, ^{8,9} the present work is the first time chloroketene has been observed in isolation. For both preparative methods chloroketene was the only observed product (although molecules like HCl and CO, observed in the UPS experiments, could not have been detected by our spectrometer). Although both preparations used high temperatures, chloroketene was found predominantly in its ground vibrational state. Nevertheless some transitions of vibrationally excited molecules were observed, but were very weak, suggesting that the molecules, by the time they had reached the microwave cell, were essentially in thermal equilibrium at room temperature.

By monitoring the rotational spectrum when chloroketene was isolated in the waveguide, a lifetime of the order of a few minutes was observed at pressures in the range $30-60 \mu$. During such a period the chloroketene rotational lines completely disappeared, to be

	³⁵ CIHCCO	³⁷ C1HCCO	³⁵ CIDCCO	³⁷ CIDCCO		
Watson's determ	ninable paramete	ers ^a (MHz)				
A B C	36 159.4104 3 021.7255 2 784.8535	35952.8602 2 951.8142 2 724.1764	29200.4759 3022.6564 2735.3859	29030.7535 2952.7989 2676.6006		
Inertial defects	(amu Ų) ^b					
Δ	0.2493	0.2499	0.2518	0.2528		
Substitution coor	dinates in ³⁵ ClH	CCO(Å)				
	$a_{C1} = -1.4264$ $a_{H} = \pm 0.0745^{c}$		$b_{C1} = 0.2060$ $b_{H} = -1.8313$			
Bond lengths and	l angles ^d obtained	l from the least	squares fits			
	I	II	III	IV	v	VI
$r(CO)^{e}$ $r(CC)^{e}$ a_{H}^{e} $ (CCO)^{e}$ $r(CC1)^{e}$ $ (CC-C-b)^{e}$ $ (CC-C-b)^{e}$ $ (CC-C-b)^{e}$ $ (CC-C-b)^{e}$ $ (CCO)^{h}$	1.161 1.316 -0.0745 180 1.726 56.3 63.5 1.082 119.3 120.9	$ \begin{array}{r} 1.161\\ 1.316\\ 0\\ 180\\ 1.726\\ 56.3\\ 63.5\\ 1.079\\ 123.2\\ 117.0\\ \end{array} $	$ \begin{array}{r} 1.161\\ 1.316\\ 0.0745\\ 180\\ 1.726\\ 56.3\\ 63.5\\ 1.082\\ 127.2\\ 113.0\\ \end{array} $	1.161 1.316 0 184 ^f 1.739 56.1 61.6 1.067 123.0 119.3	1.161 1.316 0 188 ⁴ 1.753 56.0 59.7 1.056 J22.6 121 8	$1.171 \\ 1.306 \\ 0 \\ 180 \\ 1.728 \\ 56.4 \\ 63.5 \\ 1.080 \\ 123.0 \\ 117.2 \\ 1.080 \\ 123.0 \\ 117.2 \\ 1.080 \\ 1.08$

TABLE IV. Derived structural parameters of chloroketene.

^aReference 13.

^bDerived from moments of inertia calculated using the determinable parameters. $\Delta = I_c - I_b - I_a$.

^cObtained using the double substitution method (Ref. 18).

^dBond lengths and coordinates in Å, angles in degrees.

 $^{\circ}$ These parameters were held fixed in an individual least squares fit. Structures I–V assume the C=C

and C=O lengths in ketene; structure VI assumes these lengths in methylketene.

^fAngles greater than 180° show the Cl and O atoms to be *trans*.

²The fits were made to these parameters.

^hThese parameters were calculated from the fitted parameters.

replaced by those of other unidentified species. One product is formaldehyde, and in the presence of HCl there is some evidence for regeneration of the starting acid chloride. The known chemistry of ketenes⁷ indicates that dimerization is a favored reaction pathway.

Although several attempts were made to observe *a*type transitions, even after accurate rotational constants had been evaluated, no such transitions were ever observed. This is consistent with the small value of μ_a of 0.3±0.2 D. Nevertheless, rotational transitions have often been observed with $\mu = \sim 0.3$ D, and it seems likely that μ_a for chloroketene may be nearer the lower limit of these values.

It is a pity that more definite internuclear parameters could not be obtained. Further progress could be made if a harmonic force field were known, for then the ground state average (r_z) structure could be evaluated.^{22,23} However, the vibrational spectrum of chloroketene, necessary to obtain the force field, is as yet unknown. We have begun experiments to measure such a spectrum,

TABLE V. A comparison of structural parameters^a of chloroketene and other ketenes.

Parameter	I	II	VI	ketene	methylketene (Ref. 3)
r (CH)	1.082	1.079	1.080	1.078	1,083
r(CCl)	1,726	1.726	1,728	a e e	• • •
< (HCC1)	119.3	123.2	123.0	(122.0) ^b	(123.7)°
< (HCC)	120.9	117.0	117.2	119.0	113.7
r(C=C)	1.316	1.316	1.306	1,316	1.306
r(C=O)	1,161	1.161	1.171	1.161	1,171
< (C=C=O)	180	180	180	180	180
r(CCl) < (HCCl) < (HCC) r(C=C) r(C=O) < (C=C=O)	1.726 119.3 120.9 1.316 1.161 180	1.726 123.2 117.0 1.316 1.161 180	$1.728 \\ 123.0 \\ 117.2 \\ 1.306 \\ 1.171 \\ 180$	(122.0) ^b 119.0 1.316 1.161 180	(123.7) ^c 113.7 1.306 1.171 180

^aBond lengths in Å. Angles in degrees.

^bThis is the < (HCH) in ketene.

^oThis is the < (C'CH) in methylketene, with C' being the methyl carbon.

TABLE VI. Principal values of chlorine quadrupole coupling tensor (in MHz).

	³⁵ ClHCCO	³⁵ CIDCCO	³⁷ CIDCCO
X _{RE}	$-83.4(10)^{a}$	- 87,6(28)	-61,8(42)
Xxx	40.2(15)	44.3(14)	27.9(19)
$\chi_{yy} (= \chi_{cc})$	43.19(4)	43.35(6)	33,96(7)

^aUncertainties are one standard deviation in the last significant figures.

and will report on them in due course.

Despite these reservations, a reasonable picture of the structure of chloroketene in its principal axis system has emerged and is presented, along with the measured dipole moment, in Fig. 3. Since the sign of the dipole moment contributions is not obtained we must surmise the resultant direction. From the bond moment $(C^* - O^-)$ and the small negative charge on Cl it is evident that the dipole is oriented close to the *b* axis with the positive end towards the H atom. Which side of the *b* axis is open to conjecture particularly if μ_a is at the lower limit; the two possible directions are shown in Fig. 3.

Measurement of χ_{ab} has permitted us to calculate the principal values of the chlorine quadrupole coupling tensor for three of the four isotopic species. These values are given in Table VI as χ_{xx} , χ_{yy} , and χ_{gs} . The values for ³⁵ClHCCO are well determined; those for the other species are less so. The agreement between the values for the two ³⁵Cl species is reasonable: to within two standard deviations. Also the ratios of the values for the ³⁵Cl and ³⁷Cl species follow the ratios of their respective quadrupole moments, again within two standard deviations.

The diagonalization of the quadrupole tensor also yields the angles between the principal quadrupole axes and the inertial axes. For ³⁵ClHCCO the angle Θ_{xb} between the quadrupole z axis, and the b-inertial axis, is 57.30 (13)°, where the uncertainty is one standard deviation. This is within one degree of $\angle (Cl-C-b)$, the angle between the CCl bond and the b axis; the CCl bond is thus essentially the z-principal quadrupole axis. Although $\angle (Cl-C-b)$ seems to be consistent from structure to structure (Table IV), it is not clear, at this stage, given the limitations of the structural calculations, that the difference in angle is meaningful.

The similarity of the values of χ_{xx} and χ_{yy} implies that the CCl bond is essentially cylindrically symmetrical. This is very consistent with the orbital populations obtained from the STO-3G *ab initio* calculation.¹² The calculated coupling constants are $\chi_{gg} = -85.29$, $\chi_{xx} = 43.18$, and $\chi_{yy} = 42.12$ MHz, in excellent agreement with the experimental values in Table VI.

ACKNOWLEDGMENTS

M.C.L.G. thanks the Natural Sciences and Engineering Research Council of Canada for support in the form of Research Grants. W.L-B. acknowledges gratefully the Isaak Walton Killam Foundation for the award of a Fellowship. We thank R. W. Davis for critically reading the manuscript.

- ¹B. E. Turner, Astrophys. J. 213, L75 (1977).
- ²B. Bak, D. Christensen, J. J. Christiansen, L. Hansen-Nygaard, and J. Rastrup-Andersen, Spectrochim. Acta 18, 1421 (1962).
- ³B. Bak, J. J. Christiansen, K. Kunstmann, L. Nygaard, and
- J. Rastrup-Andersen, J. Chem. Phys. 45, 883 (1966).
- ⁴W. H. Fletcher and W. B. Barish, Spectrochim. Acta 21, 1647 (1965).
- ⁵K. P. R. Nair, H. D. Rudolph, and H. Dreizler, J. Mol. Spectrosc. 48, 571 (1973).
- ⁶W. T. Brady, Synthesis **1971**, 415.
- ¹The Chemistry of Ketenes, Allenes and Related Compounds, edited by Saul Patai (Wiley, New York, 1974), Part 1.
- ⁸D. Colbourne, D. C. Frost, C. A. McDowell, and N. P. C. Westwood, Chem. Commun. 1980, 250.
- ⁹H. Bock, T. Hirabayashi, and S. Mohmand, Chem. Ber. 114, 2595 (1981).
- ¹⁰D. Kivelson, E. B. Wilson, Jr., and D. R. Lide, Jr., J. Chem. Phys. **32**, 205 (1960).
- ¹¹See, for example, W. Gordy and R. L. Cook, *Microwave Molecular Spectra in Technique of Organic Chemistry*, edited by A. Weissberger (Wiley, New York, 1970), Vol. 9, Part 2.
- ¹²W. J. Hehre, W. A. Latham, R. Ditchfield, M. D. Newton, and J. A. Pople, GAUSSIAN 70, QCPE **11**, 236 (1973).
- ¹³J. K. G. Watson, in Vibrational Spectra and Structure, A Series of Advances, edited by J. R. Durig (Elsevier, New York, 1977), Vol. VI, pp. 1-89.
- ¹⁴C. Flanagan and L. Pierce, J. Chem. Phys. 38, 2963 (1963).
- ¹⁵See, for example, Y. Kikuchi, E. Hirota, and Y. Morino, Bull. Chem. Soc. Jpn. **34**, 348 (1961); J. A. Howe, J. Chem Phys. **34**, 1247 (1961).
- ¹⁶H. P. Benz, A. Bauder, and Hs. H. Gunthard, J. Mol. Spectrosc. **21**, 156 (1966).
- ¹⁷C. C. Costain, J. Chem. Phys. 29, 864 (1958).
- ¹⁸L. C. Krisher and L. Pierce, J. Chem. Phys. **32**, 1619 (1980).
- ¹⁹W. H. Hocking, M. L. Williams, and M. C. L. Gerry, J. Mol. Spectrosc. **58**, 250 (1975).
- ²⁰P. D. Mallinson and L. Nemes, J. Mol. Spectrosc. 59, 470 (1976).
- ²¹J. S. Muenter, J. Chem. Phys. 48, 4544 (1968).
- ²²T. Oka and Y. Morino, J. Mol. Spectrosc. 8, 9 (1962).
- ²³V. W. Laurie and D. R. Herschbach, J. Chem. Phys. 37, 1687 (1962).