Communications to the Editor Chem. Pharm. Bull. 36(9)3728—3731(1988) ## STRUCTURES OF DUOCARMYCINS, NOVEL ANTITUMOR ANTIBIOTICS PRODUCED BY STREPTOMYCES SP. Tohru Yasuzawa, ^a Takao Iida, ^a Ken'ichi Muroi, ^b Michio Ichimura, ^b Keiichi Takahashi, ^b and Hiroshi Sano*, ^a Tokyo Research Laboratories, Kyowa Hakko Kogyo Co., Ltd., a 3-6-6 Asahimachi, Machidashi, Tokyo 194, Japan and Pharmaceutical Research Laboratories, Kyowa Hakko Kogyo Co., Ltd., b 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka 411, Japan. The structures of new antitumor antibiotics, Duocarmycin A, C_1 and C_2 , isolated from the culture broth of *Streptomyces sp.*, have been determined on the basis of chemical and physicochemical evidence. Duocarmycin A, $^{1)}$ C_1 $^{2)}$ and C_2 produced by *Streptomyces sp.* are novel antitumor antibiotics which are effective against murine lymphocytic leukemia p388 and murine Sarcoma 180 in mice. In this report, we describe the structural determination of the Duocarmycins. Duocarmycin C_1 (1) ³⁾ was obtained as an optically active yellow powder, $[\alpha]_D^{27}$ -126° in methanol. High-resolution electron impact mass spectrum and ¹³C NMR spectrum indicated that 1 had the molecular formula $C_{26}H_{26}ClN_3O_8$. The ¹H NMR spectrum revealed the presence of three aromatic protons, four methoxyl groups, one *tert*. methyl group, two methylene groups, one methine proton and three protons which disappeared in the presence of D_2O . Fig. 1. Structures of Duocarmycin C₁, C₂ and A IR carbonyl absorption at 1740 cm⁻¹, two ¹³C signals at 169.2 and 52.6 ppm, and a mass spectral fragmentation which lost a C₂H₃O₂ unit indicated that 1 had a methoxycarbonyl group. The ¹³C NMR signal at 197.8 ppm and the IR absorption at 1695cm⁻¹ established the presence of a ketone group which conjugated with an aromatic ring. Since the *tert*. methyl protons at 1.47 ppm were bound by long range coupling to the ester carbonyl at 169.2 ppm, the ketone at 197.8 ppm and a quaternary carbon at 70.1 ppm, and an amino proton at 7.39 ppm was bound by long range coupling to the latter two carbons, the partial structure I was established as shown in Fig. 2. Fig. 2. Partial Structures of Duocarmycin C_1 (1) The benzylic methylene (3.53 and 3.25 ppm) was coupled to a chlorine-bearing methine (4.76 ppm) which in tern was coupled to another methylene attached to nitrogen (4.35 and 3.96 ppm). The amino proton at 7.39 ppm was long-range coupled to each of the aromatic carbons C-3a, C-9 and C-9a. The ¹H-¹³C long range coupling from those protons, an aromatic proton at 6.91 ppm and a phenolic OH proton at 9.87 ppm to aromatic carbons indicated the presence of a tetrahydroquinoline moiety (II). The occurrence of NOE between this NH and the phenolic OH confirmed the attachment of N-1 to C-9a and C-3 to C-3a in the partial structure I and II. The attachment of the amino group between C-2 and C-9a, and of the phenolic OH group to C-9 were also established by a COLOC experiment with a permethylate 6, where the long range couplings from N-methyl protons at 3.24 ppm and O-methyl protons at 3.67 ppm occurred. Treatment of 1 with triethylamine in methanol at room temperature in the presence of Ag₂CO₃ produced a quinoline derivative 4 and carboxylic acid methyl ester 5. The aromatic proton signals of 4 at 8.61, 7.33 and 8.53 ppm (H-4, H-5 and H-6, respectively) had chemical shifts and coupling constants that were characteristic of the protons on C-4, C-3 and C-2 of quinoline. This indicated the presence of nitrogen linked to C-6 and C-7a. Alkaline treatment of 6 led to a dehydrochloride 7. The ¹H NMR spectrum showed that two vinyl protons at 7.49 and 6.07 ppm (H-4 and H-5, respectively) were coupled to the nitrogen-bearing methylene (4.61 and 4.53 ppm), thereby confirming the attachment of the chlorine to C-5. The long range couplings from two aromatic protons (6.87 and 6.57 ppm) and an amino proton (11.54 ppm), and a mass spectral fragment ion peak at m/z 234 $(C_{12}H_{12}NO_4)$ established the presence of an indolecarboxylic acid moiety (III). The NH proton at 11.54 ppm was long-range coupled (J=1.8 Hz) to the aromatic proton at 6.57 ppm (H-3'), which in tern exhibited long range coupling to a carbonyl carbon (163.3 ppm), indicating that this carbonyl was bonded to C-2'. The remaining aromatic proton at 6.87 ppm was assigned to H-4' by the occurrence of NOE between those two aromatic protons. The presence of three methoxyl groups at C-5', C-6' and C-7' were confirmed by the long range couplings from each OCH₃ group. The partial structure III was also defined by isolation of the alkaline degradation product 5. Finally, IR *tert.* amide absorption at 1620 cm⁻¹ and long range couplings between 6-H₂ (4.35 and 3.96 ppm) and C-2' α determined by an LSPD experiment established the connection of C-2' α to N-7, thus confirming the whole structure of 1 as shown in Fig. 1. The structure of Duocarmycin C₂ (2), ⁴⁾ C₂₆H₂₆ClN₃O₈, yellow needles, mp 256-257 °C, $[\alpha]_D^{24}$ -50.4° (MeOH), is different from that of 1 with respect to the chlorine-containing moiety. The ¹H NMR spectrum showed that chloromethyl protons (4.03 and 3.86 ppm) were coupled to a methine (3.99 ppm), which in turn was coupled to a nitrogen-bearing methylene (4.62 and 4.32 ppm). This indicated that 2 had a dihydroindole skeleton on the corresponding partial structure II of 1. The structural differences between Duocarmycin A (3), $^{5)}$ C₂₆H₂₅N₃O₈, yellow powder, $[\alpha]_D^{22}+282^\circ$ (MeOH), and Duocarmycin C₁ are also related to the partial structure II. Methylene signals at 2.24 and 1.29 ppm ($J_{g\ em}=4.1\ Hz$) and 13 C signals at 22.0, 22.3 and 30.6 ppm indicated the presence of a cyclopropane ring system. The long range couplings from the methylene (2.24 and 1.29 ppm) to C-3a and C-6a, and from a vinyl proton at 7.17 ppm to C-8a and C-3b, and a 13 C signal at 179.7 ppm revealed the structure of 3 having dienone conjugated with the cyclopropane ring. Treatment of 3 with hydrochloric acid in acetone gave 1 and 2 in the ratio ca. 1:4. This provided the evidence for the structures of Duocarmycins and meant that 1 and 2 seemed to be artifact products of 3. Fig. 3. Chemical Convertion of 1 ## REFERENCES AND NOTES - 1) I. Takahashi, K. Takahashi, M. Ichimura, M. Morimoto, K. Asano, I. Kawamoto, F. Tomita and H. Nakano, J. Antibiot., in preparation. - 2) M. Ichimura, K. Muroi, K. Asano, I. Kawamoto, F. Tomita, M. Morimoto and H. Nakano, J. Antibiot., in press. - 3) 1: IR (CHCl₃): 3450, 3300, 1740, 1695, 1620 cm⁻¹, UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (ϵ): 323 (23000), 415 (4000), MS m/z: 543 (M+), 507, 310, 272, 251, 234, 213 (base peak), high-resolution MS Calcd for C₂₆H₂₆ClN₃ O₈: 543.1406; Found: 543.1422, ¹H NMR (400MHz, DMSO- d_6 , δ): 11.54 (1H, d, J=1.8Hz, 1'-NH), 9.87 (1H, s, 9-OH), 7.39 (1H, s, 1-NH), 6.91 (1H, br s, H-8), 6.87 (1H, s, H-4'), 6.57 (1H, d, J=1.8Hz, H-3'), 4.76 (1H, m, H-5), 4.35 (1H, dd, J=13.4, 4.6 Hz, Ha-6), 3.96 (1H, br d, J=13.4Hz, Hb-6), 3.92 (3H, s, 7'-OCH₃), 3.77 (6H, s, 5'-OCH₃ and 6'-OCH₃), 3.61 (3H, s, 2-COOCH₃), 3.53 (1H, dd, J=19.2, 5.7Hz, Ha-4), 3.25 (1H, dd, J=19.2, 2.8Hz, Hb-4), 1.47 (3H, s, 2-CH₃), ¹³C NMR (100MHz, DMSO- d_6 , δ): 197.8 (C-3), 169.2 (2-COOCH₃), 163.3 (C-2' α), 152.2 (C-9), 149.1 (C-5'), 141.2 (C-9a), 139.5 (C-6'), 139.0 (C-7'), 130.7 (C-2'), 128.4 (C-7a), 125.4 (C-7a), 122.7 (C-3'a), 117.2 (C-8), 114.8 (C-3a), 114.7 (C-3b), 106.6 (C-3'), 97.9 (C-4'), 70.1 (C-2), 61.0 (7'-OCH₃), 60.9 (6'-OCH₃), 55.9 (5'-OCH₃), 54.7 (C-5), 52.6 (2-COOCH₃), 51.2 (C-6), 32.9 (C-4), 20.2 (2-CH₃). - 4) 2: IR (CHCl₃): 3450, 3325, 1740, 1700, 1585 cm⁻¹, UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (ϵ): 250 (17000, sh.), 300 (19000), 337(26000), 435 (4000), MS m/z: 543 (M+), 507, 310, 234 (base peak), high-resolution MS Calcd for C₂₆H₂₆ClN₃O₈: 543.1406; Found: 543.1427, ¹H NMR (400MHz, DMSO- d_6 , δ): 11.34 (1H, d, J=2.0Hz, 1'-NH), 10.20 (1H, s, 8-OH), 8.03 (1H, br s, H-7), 7.33 (1H, br s, 1-NH), 6.97 (1H, d, J=2.0Hz, H-3'), 6.95 (1H, s, H-4'), 4.62 (1H, br t, J=11.0Hz, Ha-5), 4.32 (1H, dd, J=11.0, 4.0Hz, Hb-5), 4.03 (1H, dd, J=10.0, 3.0Hz, Ha-4 α), 3.99(1H, m, H-4), 3.92 (3H, s, 7'-OCH₃), 3.86 (1H, dd, J=10.0, 6.9Hz, Hb-4 α), 3.81 (3H, s, 5'-OCH₃ α), 3.79 (3H, s, 6'-OCH₃ α), 3.61 (3H, s, 2-COOCH₃), 1.47 (3H, s, 2-CH₃), 13C NMR (100MHz, CDCl₃, δ): 196.6 (C-3), 169.6 (2-COOCH₃), 160.5 (C-2' α), 150.4 (C-5' b), 150.1 (C-8 b), 144.2 (C-8a), 140.9 (C-6'), 138.7 (C-7'), 137.7 (C-6a), 129.1 (C-2'), 126.0 (C-7'a), 123.5 (C-3'a), 119.5 (C-3a c), 115.6 (C-3b c), 112.5 (C-7), 107.9 (C-3'), 98.0 (C-4'), 71.2 (C-2), 61.5 (6'-OCH₃), 61.2 (7'-OCH₃), 56.4 (5'-OCH₃), 55.0 (C-5), 53.4 (2-COOCH₃), 46.4 (C-4 α), 42.3 (C-4), 22.0 (2-CH₃). a, b and c are exchangeable assignment. - 5) 3: IR (CHCl₃): 3600, 3450, 3300, 1740, 1684, 1630 cm⁻¹, UV $\lambda_{\text{max}}^{\text{MeOH}}$ nm (\$\varepsilon\$): 310 (18000), 358 (28000), 425 (8000), MS m/z: 507 (M+), 274, 234 (base peak), high-resolution MS Calcd for C₂₆H₂₅N₃O₈: 507.1639; Found: 507.1624, ¹H NMR (400MHz, CDCl₃, δ): 9.49 (1H, br s, 1'-NH), 7.17 (1H, s, H-7), 6.94 (1H, d, J=2.3Hz, H-3'), 6.78 (1H, s, H-4'), 6.36 (1H, s, 1-NH), 4.45 and 4.41 (AB in ABX, J_{AB}=10.3Hz, J_{AX}=4.7Hz, J_{BX}=ca. 1Hz, 5-H₂), 4.06 (3H, s, 7'-OCH₃), 3.93 (3H, s, 6'-OCH₃), 3.88 (3H, s, 5'-OCH₃), 3.74 (3H, s, 2-COOCH₃), 3.05 (1H, m, H-4a), 2.24 (1H, dd, J=7.6, 4.1Hz, Ha-4), 1.67 (3H, s, 2-CH₃), 1.29 (1H, dd, J=4.7, 4.1Hz, Hb-4), ¹³C NMR (100MHz, CDCl₃, δ): 194.8 (C-3), 179.7 (C-8), 168.0 (2-COOCH₃), 165.1 (C-6a), 164.4 (C-8a), 161.2 (C-2'\alpha), 150.6 (C-5'), 141.3 (C-6'), 138.9 (C-7'), 128.2 (C-2'), 126.6 (C-7'a), 123.3 (C-3'a), 113.2 (C-7), 112.0 (C-3a), 108.2 (C-3'), 97.7 (C-4'), 71.3 (C-2), 61.5 (6'-OCH₃), 61.2 (7'-OCH₃), 56.3 (5'-OCH₃), 55.3(C-5), 53.4 (2-COOCH₃), 30.6 (C-3b), 22.3 (C-4a), 22.0 (C-4), 21.1 (2-CH₃). (Received July 20, 1988)