DITERPENES FROM HOFFMANNIA STRIGILLOSA

M. JAENSCH, J. JAKUPOVIC, H. SANCHEZ* and X. A. DOMINGUEZ*

Institute for Organic Chemistry, Technical University of Berlin, D-1000 Berlin 12, F.R.G.; *I.T.S.E.M., Sucursal de Correos "J", C.P. 64849 Monterrey, N.L., Mexico

(Received 18 December 1989)

Key Word Index-Hoffmannia strigillosa; Rubiaceae; diterpenes; clerodanes; hoffmanniaketones; monoterpenes.

Abstract—The aerial parts of *Hoffmannia strigillosa* afforded, in addition to known compounds, seven new diterpenes, five clerodanes, two *ent*-phyllocladanes (8,13-bis-*epi-ent*-kauranes) and two new monoterpenes. The structures were elucidated by high field NMR spectroscopy.

INTRODUCTION

Hoffmannia strigillosa is used in folk medicine for the treatment of stomach illness and is called tepecajeta. Nothing is known about the chemistry of this species. We have investigated a species collected in Mexico.

RESULTS AND DISCUSSION

The extract of the aerial parts of H. strigillosa Hemsl. gave in addition to some widespread compounds (Experimental) the prostaglandine-like acid 1 and its methylester 2 [1], dimethyl kolavate 3 [2, 3] and further diterpenes 4-11 as well as two new monoterpenes 14 and 15.

The ¹H NMR spectra of compounds **4–9** displayed signals typical for clerodane derivatives with the side chain at different oxidation levels. An additional functional group had to be placed at C-19 or C-20. This took the form of a carboxylic group except in the case of the compound **4** where a hydroxymethyl group was present. A few of the acids could be purified only as their methylesters obtained after addition of diazomethane. The relative position of these functional groups at C-19 followed from the downfield shift of neighbouring protons, particularly of H-6. The presence of dimethyl kolavate supported the *trans* AB-ring fusion of all the clerodanes and was proved by NOE experiments (below). The α -substituted butenolide in the side chain of 4 was indicated by the chemical shift of H-14 (Table 1). The splitting of H-10 and the long range coupling (W) between H-19' and H-10 confirmed the *trans* fusion of the AB-rings. The stereochemistry at all chiral centres was deduced from the results of the NOE experiments. Clear effects were observed between H-17 and both H-7, between H-20, H-19, H-11 and H-1 α as well as between H-19', H-18 and H-6 α . These results also secured the relative position of the hydroxymethyl group.

The isomeric nature of the butenolide in the side chain of the acid 5 followed from the upfield chemical shift of H-14 (Table 1). The placement of the carboxylic group at C-5 caused the downfield shift of H-1 α , H-7 α and H-6 α (Table 1) when compared with the chemical shift of the corresponding protons in 4. The changed situation in the side chain of 6 was concluded from the typical signals of a β -substituted furan and was further supported by the ¹³C NMR spectrum (Table 2).

The ¹H NMR spectra of the derived methyl esters 7a and 8a present in the plant as the acids 7 and 8 differed from that of 5 only in the signals of the butenolide part. The doubling of some signals indicated that epimers were

present at C-15 and C-16, respectively. In the case of 7a the observed NOEs between the methoxy group and H-20 and between H-20, H-1, H-7 α , H-11, H-12 and the methoxy group confirmed the complete stereochemistry. In addition to 8a, a small amount of 9 was isolated. The corresponding compound derived from 7 could not be

Table	2.	¹³ C NMR	spectral data of 6,
		10 and 11	(CDCl ₂)

It and Π (CDCI ₃)					
с	6*	10†	11		
1	17.5 <i>t</i>	38.1 t	38.1 t		
2	33.8 t	34.0 t	33.9 t		
3	126.0 d	217.7 s	214.7 s		
4	136.2 s	47.4 s	47.2 s		
5	48.9 s	55.3 d	55.2 d		
6	29.7 t	21.6 t	21.4 t		
7	26. 2 t	40.6 t	40.7 t		
8	36.5 d	43.8 s	43.7 s		
9	39.0 s	55.7 d	55.7 d		
10	48.2 d	37.1 s	37.0 s		
11	37.8 t	19.6 t	19.7 t		
12	28.4 t	26.7 t	27.0 t		
13	125.5 s	44.0 d	44.9 d		
14	111.0 d	48.1 t	48.2 t		
15	138.4 d	44.6 t	44.7 t		
16	142.7 d	84.3 s	82.5 s		
17	18.6 q	65.6 t	67.8 t		
18	15.8 q	26.8 q	26.9 q		
19	181.4 s	21.6 q	21.7 q		
20	16.4 q	14.7 q	14.5 q		
OR			170.4 s		
			20.4 q		

*Some signals may be interchangeable.

+Assigned by hetero COSY.

Table 1. ¹H NMR spectral data of 4-6 and 7a-9a (400 MHz, CDCl₃, δ-values)

H	4	5	6	7a*	8a*	9a
1α	1.99 m	2.37 m	2.33 m	2.32 m	2.30 m	2.35 m
2α	2 10 m	2.24 m	2.22 m	2.21 m	2.21 m	1 215 220
2β	$\int 2.10 m$	2.08 m	2.09 m	2.08 m	2.08 m	2.15-2.30 m
3	5.64 br s	5.54 br s	5.55 br s	5.50 br s	5.50 br s	5.51 br s
6α	1.79 ddd	2.50 ddd	2.49 ddd	2.52 ddd	2.51 ddd	2.51 ddd
6β	1.24 ddd	1.05 ddd	1.07 ddd	1.03 ddd	1.04 ddd	1.04 <i>ddd</i>
7α	1.33 dddd	1.75 dddd	1.75 dddd)	1.68 dddd	1.69 dddd
7β	1.43 dddd	`)	
8 10	1.55 m	{ 1.50-1.60 m	$\left. \right. \right\} 1.57-1.67 m$	> 1.50-1.70 m	1.50-1.65 m	> 1.50-1.60 m
11	1.68 ddd	1.69 m				
11′	1.55 m	1.59 m))))
12	2.19 br dd	2.32 m	2.33 m	2.41 m	2.23 m)
12′	2.03 m	2.13 m	2.16 m	2.12 m	2.04 m	2.15-2.30 m
14	7.08 ddt	5.85 ddt	6.36 br s	5.86 br s	6.84 <i>ddd</i>	$6.12 \ br \ d$
15	4. 77 ddd		7.21 br s		6.09 br s	10.04 d
16		4.74 d	7.35 dd	6.00 (6.01) br s	-	
17	0.83 d	0.81 d	0.82 d	0.80 (0.79) d	0.80 (0.79) d	0.78 d
18	1.65 ddd	1.62 ddd	1.62 br s	1.56 ddd	1.56 ddd	1.56 br s
	4.04 d					
20	3.51 br d	0.74 <i>s</i>	0.70 s	0.63 s	0.60 s	0.58 s
OMe				3.65 s	3.64 s	3.87 s
						3.64 s

*The values in parentheses are of the epimer.

 $J [Hz]: 2,18 = 2',18 = 3,18 = 1.5; 6\alpha,6\beta = 6\beta,7\alpha = 13; 6\alpha,7\alpha = 6\alpha,7\beta = 3; 6\beta,7\beta = 4; 7\alpha,7\beta = 13.5; 7\alpha,8 = 11; 7\beta,8 = 4.5; 8,17 = 6.5; compound$ **4**; 11,11' = 11,12 = 12,12' = 14; 11,12' = 5; 12,14 = 12',14 = 12',15 = 12',15 = 14,15 = 1.5; 20,20' = 11.5; compound**5**: 12,14 = 12',14 = 14,16 = 1.5; compound**6**: 14,16 = 1.5,16 = 1.5; compound**8a**: 12,14 = 12',14 = 14,15 = 1.5; compound**9a**: 14,15 = 7.5.

From the most polar fraction, two further diterpenes (10 and 11) were obtained. The ¹³C NMR spectrum of 10 (Table 2) indicated the presence of a keto group (δ 214.4 s) and two additional oxygen-bearing carbons (δ 84.3 s and 65.6 t). Acetylation gave a diacetate (Experimental), thus demonstrating that both oxygen atoms were present in hydroxy groups. The general appearance of the ¹H NMR spectrum resembled that of the known ent-3-oxo-16,17dihydroxykaurane [4-6]. However, the chemical shifts of most of the signals showed significant differences. Thus 10 was either the 1-oxo-isomer or a stereoisomer. Reduction with NaBH₄ gave only one product which was further transformed to the triacetate 13 with equatorial acetoxy group as followed from the couplings of the corresponding signal. A NOE experiment secured the relative position of this group at C-3 (enhancement of H-3 signal by irradiation of H-18). Consequently, a stereoisomer has to be assumed. Extensive decoupling experiments, 2D homo- and hetero correlated spectra as well as additional NOE experiments with the triacetate led finally to the proposed structure. In Table 3 several signals were designated as multiplets; their unequivocal assignment was

based on the above experiments, in particular on the results of NOE measurements. Further dipolar interactions were observed between H-18, H-5, H-68 and 3-OAc, between H-19, H-20, H-6a and 3-OAc, between H-20, H-2 α , H-15 α , H-11 α and H-19 as well as between H-17 and H-11. The stereochemistry at C-14 was further supported by differences of chemical shifts of H-15 β in natural compounds 10 and 11 and their acetylation products (12 and 13) (Table 3). The structure of 11 was easily deduced from the ¹H NMR spectrum (Table 3). An additional acetate signal and the downfield shift of H-17 showed that the 17-O-acetate of 10 was present. The ¹³CNMR spectrum (Table 2) supported the structure. Furthermore, acetylation of 10 and 11 gave the same diacetate (12) (Experimental). The absolute configuration followed from the observed positive Cotton-effect of compound 10 [5].

The structure of compound 14, molecular formula $C_{11}H_{16}O_3$, followed from the ¹H NMR spectrum (Table 4) which indicated the presence of a derivative of geraniol with a carbomethoxy group (3.73 s). The relative position was deduced from the chemical shift of H-6 and further established by NOE between H-9 and H-5. In the case of compound 15, the olefinic signal for H-2 was

Table	3.	¹ HNMR	spectral	data	of	compounds	10-13	(400 MHz,	CDCl ₃ ,
					δ-ν	alues)			

Н	10	11	12	13	13(C ₆ D ₆)
1α	1.87 ddd	1.87 ddd	1.87 ddd	*	1.35 m
1β	1.40 m	1.38 ddd	1.37 m	1.00 m	0.72 m
2α	2.51 ddd	2.52 ddd	2.53 ddd	*	1.56 m
2β	2.38 ddd	2.37 ddd	2.36 ddd	*	1.74 m
3		_	_	4.45 dd	4.69 dd
5	1.38 m	1.38 m	t	0.86 br d	0.64 dd
6α	1.38 m	1.38 m	†	1.21 m	1.08 m
6β	1.49 m	1.49 m	†	*	1.35 m
7α	1.71 m	1.72 m	†	*	1.52 m
7β	1.53 m	1.54 m	†	*	1.35 m
9	1.15 dd	1.14 dd	1.16 dd	1.06 dd	0.77 dd
11α	1.30 dddd	1.29 dddd	†	1.26 m	1.25 m
11 <i>β</i>	1.57 m	1.58 m	†	*	1.06 m
12α	1.69 m	1.62 m	†	*	1.70 m
12β	1.46 m	1.45 m	†	*	1.35 m
13	1.93 br ddd	1.94 br ddd	2.36 m	2.32 br ddd	2.58 br ddd
14α	2.09 ddd	2.14 ddd	1.91 ddd	1.88 ddd	2.01 ddd
14β	1.11 dd	1.09 dd	1.13 dd	1.10 br d	1.03 br d
15α	2.07 dd	2.09 dd	2.20 dd	2.19 dd	2.25 dd
15β	1.26 br d	1.30 br d	1.80 br d	1.74 br d	1.95 br d
17	3.78 br d	4.25 d	4.92 d	4.91 d	5.35 d
17′	3.64 br d	4.18 d	4.42 d	4.38 d	4.63 d
18	1.08 s	1.08 s	1.08 s	0.84 s	0.91 s
19	1.02 s	1.02 s	1.02 s	0.83 s	0.89 s
20	0.99 br s	0.99 s	1.00 s	0.88 s	0.76 s
OAc		2.11 s	2.07 s	2.06 s	1.82 s
			2.00 s	2.04 s	1.80 s
				1.98 s	1.76 s

*1.4–1.7 m.

†1.25–1.75 m.

 $J[Hz]: 9,11\beta = 4.5; 9,11\alpha = 11\alpha,11\beta = 11\alpha,12\beta = 12; 11\alpha,12\alpha = 6; 12\alpha,13 = 12\beta,13 = 13,14\alpha \sim 4; 12\alpha,14\alpha = 2.5; 14\alpha,14\beta = 11; 14\beta,15\alpha = 1.5; 15\alpha,15\beta = 15; compounds$ **10-12** $: 1\alpha,1\beta = 13.5; 1\alpha,2\alpha = 1\beta,2\beta = 7; 1\alpha,2\beta = 4; 1\beta,2\alpha = 11; 2\alpha,2\beta = 16; 17,17' = 11.5; compound$ **13** $: 2\alpha,3 = 12; 2\beta,3 = 4.5; 5,6\alpha = 12; 5,6\beta = 2; 17,17' = 12.5.$

Table 4. ¹H NMR spectral data of compounds 14 and 15 (400 MHz, $CDCl_3, \delta$ -values)

Н	14	15
1	4.17 br d	3.79 m
2	5.44 qt)
3		1.70-1.25 m
4	2.15 br t	}
5	2.30 td	2.19 m
6	6.73 qt	6.75 qt
9	1.84 d	1.84 br s
10	1.69 s	0.94 d
CO_2Me	3.73 s	3.75 s

J[Hz]: Compound 14: 1,2 = 4,5 = 5,6 = 7; 2,10 = 6,9 = 1; compound 15: 3,10 = 6.5; 5,6 = 7.5; 6,9 = 1.

missing and H-10 methyl appeared as a doublet at $\delta 0.94$. Thus 15 was the 2,3-dihydro derivative of 14. The stereochemistry at C-3 was not established.

EXPERIMENTAL

The air-dried aerial parts (400 g, voucher No. 8129, collected in Cuesta Carvajal N.L. Mexico) were extracted with petrol-Et₂O-MeOH (1:1:1) and the extract (22 g) obtained separated by CC and further by MPC, TLC and/or HPLC (always RP 8, MeOH-H₂O in different ratios: HP1 8:2; HP2 7:3). Known compounds were identified by comparing the ¹H NMR spectra with those of authentic material. Conditions of final purification of new compounds are given in parentheses. The known compounds isolated were: 150 mg 1, 12 mg 2, 8 mg 3, 17 mg ursolic acid, 5 mg betulinic acid, 15 mg oleanolic acid, 19 mg phytol, 15 mg spathulenol, 12 mg 5-hydroxy-7,4'-dimethoxy-flavone as well as 50 mg of a mixture of benzaldehyde, benzoic acid, vanillic acid, eudesmicacid, cis-and trans-coumaric acid and cis- and trans-ferulic acid. The following new compounds were obtained: 20 mg 4 (MPC, petrol-Et₂O, 9:1), 3 mg 5 (HP2, R, 11.4 min), 8 mg 6 (TLC, CH₂Cl₂-Et₂O, 19:1, R_f 0.8), 8 mg 7 (TLC as 6, R_f 0.9), 8 mg 8 (HP2, R, 16.5 min), 270 mg 10 (HP2, R, 11.9 min) and 50 mg 11 (HP1, R, 5.0 min), 2 mg 14 (HP2, R, 6.3 min) and 2 mg 15 (HP2, R_t 7.9 min). Some of the compounds were purified as their methylesters after addition of CH₂N₂.

Strigillanol (4). Oil: IR $v_{max}^{ChC_3}$ cm⁻¹: 3500 (OH), 1755 (7-lactone); MS m/z (rel. int.): 318.219 [M]⁺ (1) (calc. for $C_{20}H_{30}O_3$: 318.219), 287 [M - CH₂OH]⁺ (90), 205 (34), 139 (36), 121 (58), 57 (100).

Strigillanoic acid A (5). Oil: $\text{IR } v_{\text{max}}^{\text{CHC1}_3} \text{ cm}^{-1}$: 3500–2700, 1755 (CO₂H), 1790 (y-lactone); MS m/z (rel. int.): 332.199 [M]⁺ (3) (calc. for C₂₀H₂₈O₄: 332.199), 287 [M-CO₂H]⁺ (8), 221 [M - sidechain]⁺ (10), 177 [221-CO₂]⁺ (24), 121 (44), 111 [C₆H₇O₂]⁺ (74), 95 (75), 55 (100).

Strigillanoic acid B (6). Oil; MS m/z (rel. int.): 316.204 [M]⁺ (16) (calc. for $C_{20}H_{28}O_2$: 316.204), 271 [M $-CO_2H$]⁺ (29), 221 [M -sidechain]⁺ (26), 175 [221 $-HCO_2H$]⁺ (51), 121 (65), 107 (78), 95 [C₆H₇O]⁺ (64), 81 [C₅H₅O]⁺ (100). Strigillanoic acid C (7). Isolated as its methylester 7a; IR $v_{\text{max}}^{\text{CHC1}_3}$ cm⁻¹: 3350 (OH), 1770 (γ -lactone), 1720 (CO₂R); MS m/z (rel. int.): 362.209 [M]⁺ (2) (calc. for C₂₁H₃₀O₅: 362.209), 303 [M $-\text{CO}_2\text{Me}$]⁺ (10), 285 [303 $-\text{H}_2\text{O}$]⁺ (16), 121 (37), 107 (48), 57 (100).

Strigillanoic acid D (8). Isolated as its methylester 8a: IR $v_{max}^{CHCl_3} \text{ cm}^{-1}$: 3380 (OH), 1765 (γ -lactone), 1715 (CO₂R); MS m/z (rel. int): 362.209 [M]⁺ (0.5) (calc. for C₂₁H₃₀O₅: 362.209), 303 [M-CO₂Me]⁺ (4), 285 [303-H₂O]⁺ (54), 149 (44), 135 (25), 69 (100).

Additionally obtained was 1 mg 9. Oil; MS m/z (rel. int.): 376.226 [M]⁺ (2) (calc. for $C_{22}H_{32}O_5$: 376.226), 344 [M -MeOH]⁺ (3.5), 317 [M-CO₂Me]⁺ (18), 285 [317 -MeOH]⁺ (36), 175 (56), 149 (67), 119 (81), 107 (82), 105 (98), 57 (100).

Hoffmanniaketone (10). Crystals, mp 161° ; IR $v_{\text{max}}^{\text{CHCl}_3}$ cm⁻¹: 3540, 3370 (OH), 1695 (C=O); MS m/z (rel. int.): 320.235 [M]⁺ (2.5) (calc. for $C_{20}H_{32}O_3$: 320.235), 289 [M-CH₂OH]⁺ (100), 271 [289-H₂O]⁺ (12), 61 (100); CD: Δv_{288} + 0.2. 20 mg 10 were heated on a water bath with Ac₂O for 2 hr. After work-up and TLC 5 mg 11 (identical with natural compound, see below) and 10 mg 12 (¹H NMR, Table 3) were obtained. To 20 mg 10 in 2 ml MeOH 5 mg NaBH₄ were added. After completion of the reaction and usual work-up, the product was acetylated with Ac₂O affording 20 mg 13; oil: IR $v_{\text{max}}^{\text{CHCl}_3}$ cm⁻¹: 1730, 1250 (OAc); MS m/z (rel. int.): 388.261 [M-HOAc]⁺ (35) (calc. for C₂₄H₃₆O₄: 388.261), 346 [388-ketene]⁺ (40), 328 [388 -HOAc]⁺ (64), 268 [328 -HOAc]⁺ (23), 253 [268 - Me]⁺ (25), 135 (56), 121 (64), 112 (73), 95 (87), 69 (100).

Hoffmanniaketone-17-O-acetate (11). Crystals, mp 142°; IR $v_{max}^{CHc1_3}$ cm⁻¹: 3400 (OH), 1735 (CO₂R), 1705 (C=O); MS m/z (rel. int.): 362.246 [M]⁺ (2) (calc. for C₂₂H₃₄O₄: 362.246), 289 [M -CH₂OAc]⁺ (22), 271 [289-H₂O]⁺ (3), 61 (100). Acetylation of 10 mg of 11 as described above also gave 12.

Methyl geraniol-8-oate (14). Oil; IR $\nu_{max}^{CHCl_3}$ cm⁻¹: 3500 (OH), 1715 (C=C-COOR); MS m/z (rel. int.): 198.126 [M]⁺ (1) (calc. for C₁₁H₁₈O₃: 198.126), 180 [M-H₂O]⁺ (16), 148 [180 - MeOH]⁺ (14), 121 [180 - CO₂Me]⁺ (90), 114 (100).

Methyl-2,3-*dihydrogeraniol*-8-*oate* (15). Oil; IR $v_{max}^{CHCl_3}$ cm⁻¹: 3600 (OH), 1715 (C=COOR); MS *m/z* (rel. int.): 200.141 [M]⁺ (1.5) (calc. for C₁₁H₂₀O₃: 200.141), 168 [M-MeOH]⁺ (42), 127 (48), 101 (55), 95 (100).

Acknowledgements----X.A.D. and H.S.V. wish to thank CONACYT of Mexico for grant P22OCCOR881474.

REFERENCES

- 1. Bohlmann, F., Borthakur, N., King, R. M. and Robinson, H. (1982) *Phytochemistry* 21, 125.
- 2. Misra, R., Pandey, R. C. and Dev, S. (1964) Tetrahedron Letters 49, 3751.
- 3. Misra, R., Pandey, R. C. and Dev, S. (1968) Tetrahedron Letters 2681.
- 4. Taylor, D. A. H. (1967) J. Chem. Soc. (C) 1360.
- 5. Hanson, J. R. and White, A. F. (1970) Tetrahedron 26, 4839.
- 6. Bohlmann, F., Zdero, C. and Turner, B. L. (1984) Phytochemistry 23, 1055.
- 7. Kirk, D. N. and Klyne, W. (1974) J. Chem. Soc. Perkin I 1076.