PHOTOCHEMISTRY OF NON-CONJUGATED BICHROMOPHORIC SYSTEMS

FORMATION OF CUBANE-LIKE PHOTOCYCLOMERS IN DI-(α-NAPHTHYL) COMPOUNDS

R. TODESCO, J. GELAN, H. MARTENS and J. PUT* Department of Chemistry, Limburgs Universitair Centrum, Universitaire Campus, B-3610 Diepenbeek, Belgium

and

F. C. DE SCHRYVER

Department of Chemistry, University of Leuven, Celestijnenlaan 200F, B-3030 Heverlee, Belgium

(Received in UK 26 July 1982)

Abstract—Irradiation of di-(α -naphthylmethyl)ether I, [2-(α -naphthyl) ethyl]-(α -naphthylmethyl)ether II and 1,3-di-(α -naphthyl)propanol III, with wavelengths longer than 300 nm results finally for all of these compounds in the formation of "cubane-like" photocyclomers. The structures of these cyclomers were elucidated by ¹H-NMR-spectroscopy. A general scheme for "cubane-like" photocyclomerization in di-(α -naphthyl) compounds is proposed.

Photodimers of aromatic compounds have been known for over a century, but the first report of the isolation of a photodimer in the naphthalene series appeared in 1963,¹ with an article about the intermolecular ($4\Pi s + 4\Pi s$) photodimerisation of β -methoxynaphthalene. Since then several intermolecular photodimerisations of naphthalenederivatives have been reported,² in which as well *endo-*, *exo-* as "cubane-like" cyclomers were formed (Fig. 1). In 1970, Chandross *et al.* discovered the first intramolecular $(4\Pi s + 4\Pi s)$ -photocyclomerization in the naphthalene series, with the formation of *endo*-and *endo*-Cope-rearranged-cyclomers from 1,3-di-(α -naphthyl)-propane.

In this paper we report the results of a study of the photo-chemical behaviour of the non-conjugated bichromophoric compounds di- $(\alpha$ -naphthylmethyl)ether I, [2- $(\alpha$ -naphthyl)ethyl]- $(\alpha$ -naphthylmethyl)ether II and 1,3-di- $(\alpha$ -naphthyl)propanol III, in

Fig. 1. Structure of dimers of naphthalene derivatives.

1407

which intramolecular formation of "cubane-like" photocyclomers is observed.

RESULTS

Di-(α -naphthylmethyl)ether I. In a previous paper⁴ we reported the formation of cyclomers I_a and I_b , by irradiation of iso-octane solutions of $di-(\alpha$ naphthylmethyl)-ether I. Hereby I_a underwent thermal Cope-rearrangement to I_c (Scheme 1).

We now observed that irradiation of I, under the same conditions, but for longer times (Experimental) resulted in the formation of cyclomers I_b and I_d (Scheme 2), in the same ratio as I_b and \bar{I}_a in the previous experiment. Moreover, irradiation of pure I. for longer times resulted in quantitative conversion to I_d.

From the strongly coupled 360 MHz ¹H-NMR-spectrum of I_d , J-and δ -values (Table 1) for the non aromatic protons are obtained, using computer simulation (SIMEQ II), (Fig. 2). The arylprotons absorb at 7.0 ppm as a multiplet.

[2-(α -Naphthyl)ethyl] $(\alpha$ -naphthylmethyl)ether II. Prolonged irradiation of iso-octane solutions of $[2-(\alpha-naphthyl)ethyl]-(\alpha-naphthylmethyl)ether II at$ room temperature yields compounds II_a and II_b (ratio 1/5) (Scheme 3).

The mass spectra of II_a and II_b show a molecular ion peak at m/e 312, proving the intramolecular character of the photoreaction. The presence of compound II_a is evidenced by the δ - and J-values of its olefinic and aromatic protons, which are fully comparable with those of the endo-Cope rearranged cyclomer I_c.

Fig. 2. ¹H-NMR signals of protons H₃, H₄, H₇ and H₈, simulated and experimentally obtained on a 360 MHz apparatus.

	н ₁	H ₂	Нз	H ₄	Н ₅	н _Б	H ₇	н ₈	
ц.	4 63	-9.5	/	/	,	,	,	,	
1''1	4,00	3,5	/	/	/	/	/	/	
^H 2		4,09	-9,5	/	/	/	/	/	
H ₃			4,27	11,1	0,9	8,2	D,2	0,0	
н ₄				4,27	8,2	0,9	0,0	0,2	
н ₅					3,21	6,4	1,5	8,1	
н _б						3,21	B,1	1,5	
H ₇							2,89	7,2	
н ₈								2,89	
1									

Table 1: ¹H-NMR data for I_d (CDCl₃/TMS); δ (underlined) in ppm and J in Hz

Aromatic protons: $\delta = 6,95 \text{ ppm (m)}$. Olefinic protons: H_1 : $\delta = 6.32 \text{ ppm } (J_{1,2} = 9.6 \text{ Hz}, J_{1,3} = 0.8 \text{ Hz}.^5$ H_2 : $\delta = 5.80 \text{ ppm } (J_{1,2} = 9.6 \text{ Hz}, J_{2,3} = 3.6 \text{ Hz})$. H_1 : $\delta = 6.20 \text{ ppm } (J_{1',2'} = 9.6 \text{ Hz}, J_{1',3'} = 1.6 \text{ Hz}.^5$ H_2 : $\delta = 5.65 \text{ ppm } (J_{1',2'} = 9.6 \text{ Hz}, J_{2',3'} = 5.2 \text{ Hz})$.

The strongly coupled 360 MHz-¹H-NMR spectrum of II_b was analyzed, using computer simulation (SIMEQ II) (Fig. 3). The coupling constants and chemical shifts obtained for the non-aromatic protons are summarized in Table 2. For the arylprotons a multiplet at 7.0 ppm is found. These J- and δ -values permit us to assign the structure depicted in Scheme 3 to II_b.

Protons H₁ and H₆ are highly deshielded as compared to respectively H₂ and H₅ ($\Delta\delta_{H_1H_2} = 1.20$ ppm), as one would expect from the anisotropy of the aromatic ring. From the vicinal coupling constant ${}^{3}J_{4,6}(12.0 \text{ Hz})$ evidence can be found for the axial-axial position of protons H_{4} and H_{6} .

 $1,3-Di(\alpha-naphthyl)propanol$ III. Irradiation of 1,3-di-(α -naphthyl)propanol III,⁶ in iso-octane at room temperature, up to 10% conversion results in the formation of III_a and III_b (ratio 1/9) which can by a prolonged irradiation be converted to III_c and III_d (Scheme 4).

The NMR-data (100 MHz-spectra, CDCl₃/TMS) of the aryl- and olefinic protons of III_a and III_b are fully comparable with those of the Cope rearranged product of the *endo*-cyclomer I_c of di-(α -naphthylmethyl)ether I. III_a: aromatic protons: $\delta = 7.0$ ppm (m). olefinic protons: $\delta_{H_1} = 6.15$ ppm (J_{1,2} = 10 Hz). $\delta_{H_2} = 5.65$ ppm (J_{1,2} = 10 Hz;

	^н 1	н ₂	н _з	H ₄	н ₅	H ₆	
H ₁	4,80	-11,4	0,0	0,0	0,0	0,0	
Н2		3,65	0,0	0,0	Q , 0	0,0	
н _з			4,33	-10,0	1,8	7,2	
H ₄				4,41	4,7	12,0	
H ₅					1,71	-14,0	
н _б						3,33	
	H ₇	н _в	н _g	н ₁₀	H ₁₁	^H 12	
H ₇	4,22	11,8	0,9	7,5	0,3	0,0	
н _в		4,24	7,5	0,9	0,0	0,3	
н _э			3,24	7,0	1,5	7,0	
H ₁₀				3,26	8,0	1,8	
H ₁₁					3,39	7,0	
^H 12						<u>3,20</u>	

Table 2. ¹H-NMR data for II_b (CDCl₃/TMS); δ (underlined) in ppm and J in Hz

Fig. 3. ¹H-NMR signals of protons H₃, H₄ and H₁₁, simulated and experimentally obtained on a 360 MHz apparatus.

 $J_{2,3} = 5.8$ Hz). III_b: aromatic protons: $\delta = 6.90$ ppm (m). olefinic protons: $\delta_{H_1} = 6.20 \text{ ppm} (J_{1,2} = 9.8 \text{ Hz})$. $\delta_{H_2} = 5.70 \text{ ppm} (J_{1,2} = 9.8 \text{ Hz})$. The stereochemical assignment of III, and III_d was

based on the J- and δ -values obtained from computersimulation of the strongly coupled 360 MHz NMRspectra (Table 3).6

For the arylprotons, the following values were obtained: III_c: d at 7.23 (1 H, J = 7.5 Hz); d at 7.19(1 H, J = 7.5 Hz) and multipled at \pm 7.0 (6 H). $\overline{\text{III}_{d:}}$

dd at 8.46 (1 H, J = 7.5 Hz and J = 2.0 Hz); d at 7.34 $(1 \text{ H}, \overline{J} = 7.5 \text{ Hz})$ and a multiplet at $\pm 7.0 (6 \text{ H})$.

Comparison of the 'H NMR spectra shows that proton H₅ is highly deshielded in III_c $(\Delta \delta = 0.60 \text{ ppm})$, as one would expect from the anisoptropy of the aromatic ring. On the other hand there is a striking difference between the peaks associated with the orthoaryl protons H_{12} in III_d and III_c. Inspection of Dreiding models indicates that H₁₂ in III_d (8.46 ppm) should be deshielded as compared to

								I	II _d			
	^н 1	Н2	нз	н ₄	Н ₅		н ₁	н ₂	н _з	н ₄	н ₅	
н ₁	2,20	-11,	1 5,6	13,0	11,0		2,54	-13,1	 D 5,9	12,0	3,1	
^н 2		2,3	8 0,5	6,0	5,9		1	2,0	<u>3</u> 1,2	6,0	1,4	
н _з			1,65	-12,5	0,5				1.7	<u>1</u> -12,	00,5	
н ₄				2,68	0,0		ļ			3,17	0,7	
н ₅					5,08						4,48	ł
	н _б	H ₇	н _в	Hg	H ₁₀	^H 11	н ₆	н ₇	н ₈	н ₉	н ₁₀	н ₁₁
н _б	4,25	13,0	0,0	7,6	0,0	0,0	4,24	11,0	0,0	8,0	0,0	0,5
н ₇		4,25	7,6	0,0	0,0	0,0		4,20	8,0	0,0	0,5	0,0
н _в			3,26	7,1	6,9	1,8			<u>3,15</u>	6,7	6,8	1,5
н ₉				<u>3,24</u>	1,8	6,9				<u>3,13</u>	1,5	6,8
H ₁₀					<u>3,11</u>	6,8					2,61	6,9
H ₁₁						<u>2,70</u>						2,49

Table 3. ¹H-NMR data for III_c and III_d (CDCl₃/TMS); δ (underlined) in ppm and J in Hz

H₁ in III_c (7.23 ppm) due to its proximity to the OH-group.^{2b} In the same way H₁₀ in III_c (3.11 ppm) should be deshielded as compared to H₁₀ in III_d (2.61 ppm). Furthermore, from the vicinal coupling constants ${}^{3}J_{1,4}$ (12.0 Hz in III_d and 13.0 Hz in III) evidence can be found for the axial-axial position of the protons H₁ and H₄ as well in III_d as in III_c. On this basis one can deduct from the vicinal coupling constants ${}^{3}J_{1,5}$ (3.1 Hz in III_d and 11.0 Hz in III_c) that the OH-group has an axial position in III_d and an equatorial one in III_c as depicted in Scheme 4. III_c and III_d show the following infrared absorption for the OH group: III_c: broad band between 3400 and 3100 cm⁻¹. III_d: 3575 (sharp, 11%); 3540 (sharp 30%); 3500–3300 (broad, 40%) 3400–3200 (broad, 13%).

The bands at 3575 and 3540 cm⁻¹ are characteristic for OH with intramolecular single bridge Hbond, or OH- π -association,⁷ while those between 3500 and 3300 cm⁻¹ can be attributed to OH with intermolecular dimeric bond⁸ and those between 3400 and 3200 cm⁻¹ to OH with intermolecular polymeric H-bond.⁹

The OH- π interaction, which occurs in III_d, but which is totally absent in isomer III_c, could be an explanation for the fact that III_c and III_d are formed in a ratio 1/9.

To check if $(4\Pi s + 4\Pi s)$ cyclo-adducts are formed, which could not be detected after working up at room temperature, the experiment was performed, up to 10% conversion, in a cold room at 4°. From the ¹H-NMR-spectrum of the reaction mixture III_e could be observed.

In view of the 1/9 ratio observed for products III_a and III_b , and in view of the low conversion it is not possible to observe III_f in this experimental set-up. The NMR-data (100 MHz-spectrum, CDCl₃/TMS) of protons H_1 , H_2 and H_3 and of the arylprotons of III_e are fully comparable with those of I_a :

aryl H :
$$\delta = 6.65$$
 ppm (m)

$$H_3: \delta = 6.05 \text{ ppm} (J_{2,3} = 8 \text{ Hz})$$

$$H_2: \delta = 6.35 \text{ ppm (m)}$$
 $H_1: \delta = 3.80 \text{ ppm (m)}.$

DISCUSSION

The "cubane-like" cyclomers can theoretically be formed by four different path ways (Scheme 5).

Way 2 in which the "cubane-like" cyclomer is directly formed by a $2(2\Pi s + 2\Pi s)$ -cyclomerization can be eliminated in view of the results of the irradiations during shorter times, in which only *endo*- or *endo*-Cope-rearranged cyclomers are formed.

Way 3 in which the "cubane-like" cyclomer results from a $(2\Pi s + 2\Pi s)$ -cycloaddition of the *endo*cyclomer can be excluded on the basis of the UVspectrum of I_a (Fig. 4) together with the experimental conditions under which the cyclomerizations were performed.

The UV-spectrum of this compound is very similar to that of the intra-molecular photodimer of anthracene.¹⁰ The slight hypochromism and bathochromic shift as compared to that of 2,3-dihydronaphthalene¹¹ can be attributed to interactions between the two chromophores.¹² As the irradiations were carried out in

Fig. 4. U.V.-spectrum of I_a in iso-octane.

Scheme 5.

pyrex vessels and as *endo*-cyclomers don't absorb at wavelengths longer than 295 nm, it is obvious that the cubane-like cyclomers can not be formed directly from these *endo*-cyclomers. Even when the irradiations were performed with a filter solution, which absorbs all light below 300 nm, formation of cage-like cyclomers occurs, proving that way 3 is quite unlikely.

Way 4, in which the *endo*-Cope-rearranged cyclomer is directly formed by a $(2\Pi s + 2\Pi s)$ -cyclomerization from the di- α -naphthyl compound, can be rejected on the basis of the following facts:

(a) Irradiation of I and III during shorter times and working up in the cold, resulted first in *endo*-cyclomer.

(b) Irradiation of 1,3-di- $(\alpha$ -naphthyl)propane by Chandross *et al.* yielded first *endo*-cyclomer, which upon standing Cope-rearranged.

(c) In the experiment of Yang *et al.*, in which the intermolecular cycloaddition of 1,3-cyclohexadiene to naphthalene was studied, irradiation resulted in the formation of *endo*-IVa, which upon heating was converted into IVb.

It can be concluded that way I constitutes the most plausible reaction scheme for the formation of cubane-like cyclomers from di- $(\alpha$ -naphthyl) compounds.

EXPERIMENTAL

UV-spectra were recorded on a Varian Spectrophotometer. ¹H-NMR spectra of the cyclomers were recorded on a Brucker 360 MHz instrument and on a Varian XL 100 instrument.

Photocyclomerization. The photocycloadditions were performed by irradiation of degassed solns ($\leq 10^{-3}$ M) of I, II and III in iso-octane, at room temp. in a Rayonet RS preparative photochemical reactor, equipped with 8 RUL-3000 Å lamps. After irradiation the solns were evaporated under reduced pressure and chromatographed as summarized in Table 4.

 $Di-(\alpha-naphthylmethyl)$ ether I. To a soln of 2.4 g (100 mmol) NaH in 100 ml dry THF, 15.8 g (100 mmol) (α -naphthyl) methanol were added and stirred during 5 hr at room temp. 14.0 g (79 mmol) of α -(chloromethyl)-naphthalene were added slowly and the soln was stirred during an additional 24 hr. The mixture was poured into 500 ml H₂O and extracted with benzene. A first purification

Iso-octane solutions of compound	Irradiation time	Formed cyclomers	Chemical yield (%) ⁽ c)	Chromatographic conditions
Ī	5 hours	I_a, I_b and I_c (a)	98	Column chromatograhy on silica with ben- zene
	3 weeks	I _b and I _d ratio (1/3)	90	Thin-Layer chromato- graphy on silica with THF
<u>"</u>	2 weeks	I _d	98	Thin-Layer chromato- graphy on silica with THF
II	2 weeks	II _a and II _b ratio (1/5)	23	Thin-Layer chromato- graphy on silica with n.pentane/CH ₂ Cl ₂ (20/80)
<u>111</u>	3 hours ^(b)	III _a end III _b ratio (1/9)	10	HPLC on silica (10 μ) with n.hexane/ diethylether (80/20)
	3 days	III _c and III _d ratio (1/9)	99	HPLC on silica (10 µ) with n.pentane/ CH_Cl_/CH_CN (75/15/10)

Table 4. Irradiation time, chemical yield and chromatographic conditions.

(a) Cyclomer $\rm I_{c}$ is obtained by refluxing a $\rm CH_2Cl_2$ -solution of $\rm I_{a}$ during two hours or by letting stand this solution during two days at room temperature.

(b) Working up of the reaction mixture occured at room temperature.

(c) The rest is recovered starting material; no other products were isolated.

was performed by column chromatography on silicagel with benzene. Preparative HPLC on silicagel $(10 \,\mu)$ with cyclohexane/CH₂Cl₂ (35/65), followed by recrystallization from benzene/n-pentane (90/10), yielded 8.9 g (38%) of colorless hexaëdric crystals with m.p. 120.5-121°. ¹H-NMR (CDCl₃/TMS) δ (ppm): 7.2 – 8.3 (m, 14 H), 5.10 (s, 4 H). IR: ν_{max}^{KBr} (cm⁻¹) 3040 w (=C-H); 1595 w, 1450 w (ring C-C); 1070 s, 1060 s (C-O-C); 785 s, 765 (C-H out of plane deformation) (Found: C, 88.72; H, 6.79; Calc. for C₂₂H₁₈O: C, 88.60; H, 6.10%).

[2-(α -Naphthylethyl)] (α -naphthylmethyl)ether II. Synthesis of this compound is analoguous to that of di-(α -naphthylmethyl)ether, starting from 2.4 g (100 mmol) NaH, 17.2 g (100 mmol) 2-(α -naphthyl)ethanol and 14.0 g (79 mmol) α -(chloromethyl)naphthalene. A first purification was performed by column chromatography on silicagel with benzene. Further purification was obtained by preparative HPLC on SiO₂(10 μ) with cyclohexane/CH₂Cl₂ (50/50) followed by recrystallization from MeCN, which resulted in 8.6 g (35%) of white needles, m.p. 42.0-42.5°. ¹H-NMR (CDCl₃/TMS) δ (ppm): 7.2-8.3 (m, 14 H); 4.95 (s, 2 H); 3.35 (t, 2 H); 3.25 (t, 2 H). IR ν_{max}^{KB} (cm⁻¹): 3040 w (=C-H); 1595 w, 1505 w, 1605 w (ring C-C); 1100 s, 1080 s, 1065 w (C-O-C); 785 s, 760 s (C-H out of plane deformation). (Found: C, 88.32; H, 6.72; Calcd for C₂₃H₂₀O: C, 88.40; H, 6.50%).

1,3-Di- $(\alpha$ -naphthyl)propanol III. To a soln of 0.7 g (18 mmol) LiAlH₄ in dry ether under N_2 , slowly an ether soln of 3.1 g (10 mmol) of 1- α -naphthoyl-2- α -naphthylethylene¹⁴ was added, so that a gently refluxing of the ether occurred. After all the α, α -chalcone was added, the excess of LiAlH₄ was destroyed by adding EtOAc, after which the mixture was filtrated. The filtrate was extracted with CH₂Cl₂, while the remaining ppt was dissolved in 2N H₂SO₄ and extracted with CH₂Cl₂. The CH₂Cl₂-portions were put together, and after evaporation of the CH₂Cl₂, the resulting pale yellow solid, was chromatographed on silicagel with benzene. Preparative HPLC on silica (10μ) with n-hexane/CH₂Cl₂/MeCN (75/15/10), followed by recrystallization from cyclohexane afforded 2.4 g (78%) of colorless needles with m.p. 100.5-101°. ¹H-NMR (CDCl₃/TMS) δ (ppm): 7.3-8.2 (m, 14 H); 5.55 (t, 1 H); 3.34 (t, 2 H); 2.3 (m, 2 H); 2.00 (s, 1 H). IR ν_{max}^{KBr} (cm⁻¹): 3400–3200 m (O–H); 3030 m (=C–H); 2960 m (C-H); 1595(s), 1505(s), 1455(w) (ring C-C); 780(s); 760(s) (C-H out of plane deformation). (Found: C, 88.57; H, 6.55; Calcd for C₂₃H₂₀O: C-88.40; H, 6.50%).

Photocyclomers. All of the reported photocylomers show a molecular ion peak at a m/e which is identical to the m/e of the di-(α -naphthyl) compound from which they were formed.

Acknowledgements—The authors are indebted to the N.F.W.O., the F.K.F.O., the University of Leuven Research

Fund, the University Centre of Limburg and the Ministry of Scientific Programming for financial support. Prof. Dr. Antheunis is acknowledged for the use of NMR-equipment.

REFERENCES

- ¹J. S. Bradshaw and G. S. Hammond, J. Am. Chem. Soc. **85**, 3953 (1963).
- ^{2a}T. W. Mattingly, J. E. Lancaster and A. Zweig, Chem. Commun. 595 (1971);
- ^bP. J. Collin, G. Sugodwz, T. Teitei, D. Wills and W. H. F. Sasse, *Aust. J. Chem.* **27**, 227 (1974);
- T. Teitei, D. Wells, P. J. Collin, G. Sugodwz and W. H. F. Sasse, *ibid.* 28, 2005 (1975);
- ^dT. Teitei, D. Wells and W. H. F. Sasse, *ibid.* 29, 1983 (1976);
- T. Teitei, D. Wells, T. H. Spurling and W. H. F. Sasse, *ibid.* 31, 85 (1978).
- ³E. A. Chandross and C. J. Dempster; J. Am. Chem. Soc. **92**, 703 (1970).
- ⁴R. Todesco, J. Gelan, H. Martens, J. Put and F. C. De Schryver, *Tetrahedron Letters* 2815 (1978).
- ⁵M. A. Cooper, D. D. Elleman, C. D. Pearce and S. L. Manatt, J. Chem. Phys. **53**, 2343 (1970).
- ⁶R. Todesco, J. Gelan, H. Martens, J. Put and F. C. De Schryver, Bull. Soc. Chim. Belg. 89, 521 (1980).
- ⁷L. J. Bellamy, *The IR Spectra of Complex Molecules*, p. 114. Chapman and Hall, London (1975);
- ^bM. Oki and H. Iwamura, Bull. Chem. Soc. Japan 32, 950 (1959);
- ^N. Mori, S. Omura and Y. Tsuzuki, *ibid.* **38**, 1631 (1965). ⁸H. J. Marinan and J. Mann, *Trans. Faraday Soc.* **52**, 481,
- 487, 492 (1956).
- ⁹L. P. Kuhn, J. Am. Chem. Soc. 74, 2492 (1952).
- ^{10a}C. Coulson, L. E. Orgel, W. Taylor and J. Wein; J. Chem. Soc. 2961 (1955);
- ^bK. S. Wei and R. Livingston, *Photochem. Photobiol.* 6, 229 (1967).
- ¹¹W. Hückel, E. Vevera and U. Wörffel, *Chem. Ber.* **90**, 901 (1957).
- ^{12a}D. J. Cram, N. L. Allinger and H. Steinberg, J. Am. Chem. Soc. **76**, 6132 (1954),
- ^bC. J. Brown, J. Chem. Soc. 3265, 3279 (1953);
- ^cK. Lonsdale, H. J. Milledge and K. V. Rao, *Proc. Roy.* Soc. A255, 82 (1960),
- ^dJ. N. Murell, The Theory of the Electronic Spectra of Organic Molecules, Chap. 7. Wiley, New York.
- ¹³N. C. Yang and J. Libman, J. Am. Chem. Soc. 94, 9228 (1972).
- ¹⁴1- α -Naphthoyl-2- α -naphthylethylene was prepared as described earlier by Chandross *et al.*³ Yield 85%; m.p. 76-79°.¹⁵
- ¹⁵L. Wolf and C. Tröltzoch, J. Prakt. Chem. 17, 69 (1969).