New Synthesis of 5-Deazaflavins

By FUMIO YONEDA* and YOSHIHARU SAKUMA

(Faculty of Pharmaceutical Sciences, Kumamoto University, Oe-honmachi, Kumamoto 862, Japan)

Summary Treatment of 6-(N-alkylanilino)uracils with a mixture of phosphorus oxychloride and dimethylformamide (or a mixture of ethyl chloroformate and dimethylformamide) gave the corresponding 5-deazaflavins; reaction of 6-chloro-5-formyl-3-methyluracil with Nalkylanilines also gave the corresponding 5-deazaflavins.

THE 5-deazaflavin ring system has become of considerable interest recently because of the discovery that the oxidationreduction system is similar to that of flavins.¹ The 5-

deazaflavins have previously been synthesized by the condensation of anthranilaldehydes with barbituric acid.² We now report two new synthetic approaches to 5-deaza-flavins.

TABLE 1

5-Deazaflavin formation by the reaction of 6-(N-alkylanilino) uracils with a mixture of phosphorus oxychloride and dimethylformamide

		Recrystal-		
Starting		lisation		
material	Product	solvent	M.p./°C	Yield/%
(Ia)	(IIa)	EtOH	327	96
(Ib)	(IIb)	EtOH	283	88
(Ic)	(IIc)	EtOH	267	86
(Id)	(IId)	EtOH	245	89
(Ie)	(IIe)	AcOH	359	95
(If)	(IIf)	AcOH	353	87
(Ig)	(IIg)	AcOH	318	90
(Ih)	(IIĥ)	EtOH_AcOH	302	92

Method A. The treatment of 3-methyl-6-(N-methylanilino)uracil $(Ia)^3$ with a mixture of phosphorus oxychloride and dimethylformamide (POCl₃+DMF) at 90 °C for 2 h, followed by dilution with water and neutralization

TABLE 2

5-Deazaflavin formation by the reaction of 6-chloro-5-formyl-3-methyluracil with N-alkylanilines

Reaction conditions					
Product	Temp/°C	Time/min	Yield/%		
(IIa)	Room temp.	30	62		
(IIb)	50 -	60	58		
(IIc)	80	60	42		
(IId)	80	60	48		

with sodium bicarbonate caused the separation of 3,10dimethylpyrimido[4,5-b]quinoline-2,4(3H,10H)dione (IIa).† Similarly, the treatment of other 6-(N-alkylanilino)uracils

† Satisfactory analytical and spectral data were obtained for all products.

(Ib-h) with POCl₃+DMF under the same conditions gave the corresponding 5-deazaflavins (Table 1).

Refluxing (I) with ethyl chloroformate in dimethylformamide⁴ for 2 h also gave (II) in almost the same yields.

Method B. Treatment of 1-methylbarbituric acid with $POCl_3 + DMF$ under reflux for 3 h, followed by evaporation of the solvent and dilution with ice-water, precipitated 6-chloro-5-formyl-3-methyluracil (III), m.p. 188 °C (decomp.), in 68% yield. Compound (III) was very unstable and used without purification. Stirring of (III) in dimethylformamide with 2 equivalents of N-methylaniline at room temperature for 2 h, followed by dilution with ether gave (IIa). Similarly, the treatment of (III) with other N-alkylanilines under the conditions described in Table 2 gave the corresponding 5-deazaflavins.

Stirring of (III) with an equimolar amount of N-D-ribitylxylidine in dimethylformamide in the presence of triethylamine at room temperature for 3 h, followed by dilution with ether, caused the separation of 3-methyl-5-deazaflavin (IV), m.p. 284 °C (decomp.) (from EtOH), in 43% yield.

(Received, 18th December 1975; Com. 1399.)

¹ D.F.E. Edmondson, B. Barman, and G. Tollin, *Biochemistry*, 1972, 11, 1133; M. Brüstlein and T. C. Bruice, J. Amer. Chem. Soc., 1972, 94, 6548; S. Shinkai and T. C. Bruice, J. Amer. Chem. Soc., 1974, 96, 5571.
² D. E. O'Brien, L. T. Weinstock, and C. C. Cheng, J. Heterocyclic Chem., 1970, 7, 99.
³ F. Yoneda, Y. Sakuma, M. Ichiba, and K. Shinomura, J. Amer. Chem. Soc., in the press.
⁴ K. Harra, E. Takarai, M. Erkiba, and K. Takuranga, T. Amer. Chem. Soc., in the press.

⁴ K. Ikawa, F. Takami, Y. Fukui, and K. Tokuyama, *Tetrahedron Letters*, 1969, 3279.