Nucleic acid bases studied by matrix isolation vibrational spectroscopy: uracil and deuterated uracils

A. J. BARNES, M. A. STUCKEY

Department of Chemistry and Applied Chemistry, University of Salford, Salford M5 4WT, U.K.

and

L. LE GALL

Laboratoire de Thermodynamique Chimique, Université de Bretagne Occidentale, 6 Avenue le Gorgeu, 29283 Brest Cedex, France

(Received 18 June; in revised form 13 October 1983)

Abstract—A vibrational assignment of the isolated uracil molecule is presented, based on i.r. and Raman spectra of uracil trapped in argon and nitrogen matrices and i.r. spectra of seven deuterated derivatives of uracil isolated in argon matrices. The observed spectra agree well with previous quantum mechanical calculations. The relationships observed between the monomer bands, bands due to associated uracil in argon matrices and the spectrum of the pure solid lead to a revised vibrational assignment for uracil in the solid phase. As well as large shifts in the NH stretching and out-of-plane bending modes between the monomer and the hydrogen-bonded solid, many other bands show appreciable shifts as a consequence of the extensive mixing of the NH in-plane bending modes with the CH in-plane bending and ring stretching modes. The spectrum of the associated uracil species in matrices suggests that it is a cyclic dimer, linked by $C_2=0 \dots H-N_1$ hydrogen bonds.

INTRODUCTION

Infrared, Raman and resonance Raman spectroscopies are widely used in biophysical research on nucleic acids and related compounds. A full understanding of the vibrational spectra of nucleic acid bases is thus of great importance if such work is to be soundly based. The i.r. and Raman spectra of the simplest pyrimidine base, uracil, and its derivatives have been extensively studied, both experimentally (mainly as polycrystalline solids or in aqueous solution) and through force field calculations [1-22]. One of the most widely quoted studies is that of SUSI and ARD [5, 10], who assigned the spectra of uracil and its 1,3-, 5,6- and *per*-deuterated derivatives from the observed isotopic shifts with the aid of a normal coordinate calculation.

Recently, three molecular orbital calculations of the in-plane vibrational modes of the uracil molecule have been published [17-19]. The MNDO-MOCIC calculation of BOWMAN and SPIRO [17] and the ab initio calculation of NISHIMURA et al. [19] both reproduced well the observed vibrational frequencies and are in qualitative agreement with each other, although the calculated potential energy distributions differ considerably. However, the quantum mechanical calculations are based on an isolated uracil molecule whereas the observed vibrational frequencies are generally taken from the solid phase, where considerable perturbation from intermolecular hydrogen bonding [23, 24] can be expected (only limited spectral information has been reported for uracil in the vapour phase [12] since the elevated temperature required leads to extensive rotational broadening). BANDEKAR and ZUNDEL [22] have attempted to take account of these intermolecular interactions in the solid phase by

carrying out a normal coordinate analysis of the unit cell of uracil, including out-of-plane and lattice modes as well as the in-plane vibrational modes.

Matrix isolation vibrational spectroscopy has proved to be of great value in hydrogen bonding studies [25]. Trapping the solute in an inert solid matrix at low concentration enables the i.r. spectrum of the monomer to be obtained, while raising the concentration allows the changes in the spectrum resulting from intermolecular hydrogen bonding to be observed. Previous studies of maleimide [26] and barbituric acid derivatives [27-29] have demonstrated the value of complementary Raman spectroscopic studies, as well as isotopic substitution, in arriving at a vibrational assignment. We have obtained i.r. and Raman spectra of uracil in both argon and nitrogen matrices and i.r. spectra of seven deuterated derivatives of uracil in argon matrices, over a range of concentrations, in order to assign the vibrational spectrum of the isolated uracil molecule and to observe the changes in the spectrum resulting from intermolecular hydrogen bonding.

After this work had been completed, matrix isolation studies of uracil and 1,3-deuterated uracil were reported by SZCZESNIAK *et al.* [30] and by MALTESE *et al.* [31]. HARSANYI and CSASZAR [32] have calculated both the in-plane and out-of-plane vibrations of uracil by the CNDO/2 force method.

EXPERIMENTAL

Uracil was a commercial product. The 1,3-deuterated compound was prepared by repeated exchange of uracil with D_2O , refluxing for 2-3 h each time. The various C-deuterated uracils were synthesized from orotic acid or iso-orotic acid according to the scheme shown in Fig. 1. Matrix samples were

prepared by heating the solid uracil to a temperature in the range 110-170°C and condensing the resulting vapour simultaneously with a stream of argon or nitrogen matrix gas, using the apparatus described in Ref. [28]. The matrix was deposited on a caesium iodide window (i.r.) or a highly polished metal block (Raman) maintained at ca. 20 K by a C.T.I. Cryodyne closed-cycle refrigerator. The concentration of the uracil in the matrix was varied by changing the temperature to which the solid uracil was heated, and the time taken to deposit sufficient sample for spectroscopic examination varied from a few min to several h. No evidence of decomposition of the uracil was found in any of the experiments. Doping experiments were carried out by depositing the vapour from the solid uracil simultaneously with a 1:1:100 mixture of the dopant (nitrogen or water) and argon matrix gas. Infrared spectra were recorded on a Perkin-Elmer 225 spectrophotometer and Raman spectra on a Spex Ramalog 5M spectrometer with a Spectraphysics 171 argon ion laser source, adjusted to give a power of 100-200 mW at the sample.

Infrared and Raman spectra of uracil were obtained in both argon and nitrogen matrices using vaporization temperatures ranging from 110 to 170°C. At the lowest temperature used, primarily monomeric uracil was trapped whereas at higher temperatures a mixture of monomer and associated species was obtained. Infrared spectra of the solid at 20 K, deposited from the vapour phase and annealed at room temperature, and in a KBr pellet at room temperature were also recorded. Comparison of the spectra enabled bands to be assigned to either monomer or associated species and the results obtained are summarized in Table 1 (the assignments will be discussed in detail below).

The effects of possible impurities in the argon matrix spectra were checked by recording spectra of matrices

 Table 1. Bands observed (cm⁻¹) in vibrational spectra of uracil in matrices, compared with calculated wavenumbers and the spectra of solid uracil

	approx description		Ar (mo	nomer)	N ₂ (mon	nomer)	Ar(ass)	solid	i.r.
mode		calca	i . r .	Raman	i.r.	Raman	i.r .	20 K	KBr
v ₁	N ₁ H stretch	3479	3485 s	3486 m	3468 s		2000 1-	3210 sh	3210 br
ν ₂	N ₃ H stretch	3453	3435 s	3436 m	3421 ms		3020 DF	3110 s	3110 s
^۷ 3	C ₅ H stretch	3068		3084 m					3080 sh
v4	C ₆ H stretch	3031							
ν ₅ +	^v 13							2945 w	2935 m
ν ₈ +	· v ₉							2865 w	2860 w
2v_9	-							2830 w	2820 w
v10	+ ν ₂₁		1774 s		1778 m				
ν 5	$c_2 = 0$ stretch	1775	1764 vs 1761 vs	1762 m	1761 vs	່	[1718 vs	1717 vs
^V 15	^{+ ν} 17		1757 vs		1756 ms			1765 w	1768 m
v ₁₁	+ v ₂₁		1741 s		1746 ms				
ν 13	+ v ₁₈		1733 s				× 1683 🔾		
			1731 s						
^v 12	+ v ₂₀		1728 vs	1733 m	1735 vs				1740 s
^v 13	+ ^v 19		1718 m	1722 m					
6`	$C_4 = 0$ stretch	1748	1706 vs	1707 m	1704 vs	1702 m)	L.	. 1675 s	1673 s
^v 13	+ ^v 20		1698 ms		1707 s				
7	C=C str/CH bend	1664	1643 m	1647 s	1644 m	1648 vs	1	1640 s	1650 sh
				1603 s		1604 s			
² ² 24			1515 w		1526 w		1535		1508 mw
ν 8	ring str/NH bend	1483	1472 ms		1477 m			1455 m	1454 m
° 9	ring str/NH bend	1397	1399 vs		1405 ms	1414 s	1422	1424 s	1418 ms
ν 10	CH/NH i.p. bend	1378	1389 m 1386 mw		1388 w	1392 s		1395 mw	1391 m
°11	ring stretch	1372	1360 vw	1360 m	1368 w	1373 w		1344 vw	1355 vw
² ² 26			1313 vw						
			1304 vw						
V12	CH i.p. bend	1247	1217 w	1220 s		1225 s		1220 sh	1217 w
^v 13	ring str/NH bend	1171	1184 vs	1195 s	1190 s	1199 m	1226 1215 1205 1200 1193	1240 vs	1237 s
² ¹⁸			1100 w						
ν ¹⁴	NH/CH i.p. bend	1069	1073 w 1066 w		1069 w			1095 w	1098 w

^v 15	ring i.p. def.	978	(982	w)	1001	m	(977	w)	1004	m		1005	w	1006	w
ν 16	ring str/NH bend	932	958	w	958	w	962	w			987 966	994	m	993	ш
^v 22	C ₆ Ho.p. bend	875	842	vw			842	vw			840	825	m	823	m
^v 23	$C_4 = O/CH \text{ o.p. bend}$	832	804	s			811 809	m m							
[∨] 17	ring breathe	740	759	sh	761	s			766	s		776	w	782	w
^V 24	$C_2 = 0 \text{ o.p. bend}$	755	757	s			762	s			768	761	m	760	m
^v 25	C ₅ H o.p. bend	684	718	w			724	w							
[∨] 26	N ₃ Ho.p. bend	496	662	s			686 682	m m			883 b	r { 355	m	850	s
^v 27	N ₁ H o.p. bend	472	551	m			592	mw		J		805	sh	805	m
ິ18	ring i.p. def.	551	559 555	w w			558	w.			571	538	w	585	w
^v 19	C=O i.p. bend	532	536	w			538	w				564	m	566	m
[∨] 20	ring i.p. def.	502	516	m			517	m			529	544	s	549	ទ
												536	sh	530	sh
^V 28	ring o.p. def.	338					400	mw			407	400	sh	428	w
ν 21	C=O i.p. bend	374	391	m			393	m			415	435	s	436	m
[∨] 29	ring o.p. def.	119												194	m ^b
^v 30	ring o.p. def.	66													

Table 1 (Contd.)

^aCalculated wavenumbers for the in-plane modes from NISHIMURA et al. [19] scaled by 0.90; for the out-of-plane modes from HARSANYI and CSASZAR [32].

^bRef. [16].

Abbreviations: vs = very strong; s = strong; ms = medium strong; m = medium; mw = medium weak; w = weak; vw = very weak; br = broad; sh = shoulder; i.p. = in-plane; o.p. = out-of-plane.

doped with nitrogen or water. The main effect of nitrogen impurity was the appearance of additional bands at 3468, 3424, 689 and 582 cm^{-1} , with a corresponding reduction in the intensities of the bands at 3485, 3435, 662 and 551 cm^{-1} . The nitrogen-induced bands are all close to the wavenumbers of the corresponding modes in a pure nitrogen matrix (Table 1). Addition of water led to the appearance of bands at 1698 and 767 cm⁻¹, the band at 757 cm⁻¹ decreasing in relative intensity. New absorptions also appeared around 400 cm⁻¹, but it was not clear whether these were due to water itself or perturbed modes of the uracil.

Infrared spectra of 5-, 6-, 5,6-, 1,3-, 1,3,5-, 1,3,6- and *per*-deuterated uracils were obtained in argon matrices at different vaporization temperatures and also in the solid phase. The bands observed for the monomers in argon matrices are summarized in Table 2 and the solid phase spectra of uracil and its 5,6-, 1,3- and *per*-deuterated counterparts are compared in Table 3.

VIBRATIONAL ASSIGNMENT

Uracil has 30 fundamental modes of vibration, which divide into 21 a' and nine a" modes. The quantum mechanical calculation of the in-plane modes of vibration by NISHIMURA et al. [19] proved of great value in assigning the spectra. The calculated wavenumbers scaled by a constant factor of 0.90 (Fig. 2) reproduced closely the observed wavenumbers for uracil and were reasonably close to the observed wavenumbers for most of the modes of the deuterated uracils.

NH stretching modes

Infrared spectra of uracil and deuterated derivatives in the NH(ND) stretching region are illustrated in Fig. 3. Monomeric uracil gave a pair of bands at 3485 and 3435 cm^{-1} , close to the wavenumbers reported by NOWAK et al. [12] in the vapour phase (3486 and 3445 cm^{-1}). In a nitrogen matrix a similar pair of bands was obtained, shifted to lower wavenumbers $(3468 \text{ and } 3421 \text{ cm}^{-1})$. In both matrices, the higher wavenumber band was more intense, although the difference was smaller in the argon matrix. The quantum mechanical calculations [19] found the higher frequency mode to be the N_1H stretch and the lower frequency mode to be the N₃H stretch, although the calculated splitting (26 cm^{-1}) is rather smaller than that observed either in the gas phase or in matrices (40-50 cm⁻¹). Aggregated uracil in argon or nitrogen matrices exhibited a broad band centred around a prominent negative absorption (Evans hole) at ca. $3000 \,\mathrm{cm}^{-1}$. The pure solid gave a strong, broad absorption centred around 3110 cm⁻¹. The Cdeuterated uracils gave virtually identical spectra in the NH stretching region.

mode	approx description	uracil	5-d	*	6-d		5,6-d		1,3-d		1,3,	5-d	1,3,6		per-c	 1	
							·····										
۷1	N ₁ H stretch	3485 s	3485	s 3	485	S	3485 s		2593	m	2587	11 S	2583	m	2582	Ш.	
°6 [™]	$^{\vee}$ 16 N H stretch	3495 0	2425		175		2425 0		9540	_	2000		2060	•	2007	w	
2	C H stretch	3084 ⁸	3435	в с	433	в	3433 B		6J49	щ	4000	•	4346	w	2339	w.	
ў 3 У	C H stretch	0004															
*4	6. 501010.							•	1768	m							
V	+ V	1774 s		1	775	8			1761	 8							
10	21								1751	10							
ັ5	^C 2 ^{=0 stretch}	1764 vs 1761 vs	1764	vs 1	.764	VS	1764 v	8	1744	VS	1751	VS	1750	VS	1749	VS	
^v 12	^{+ ν} 15			1	757	vs	1757 v	8									
v15	+ ^v 17	1757 vs	1743	s 1	742	\$	1742 s	:	1731	8	1730	8	1730	s	1729	s	
v11	+ ^v 21	1741 s	1724	ms 1	724	VS	1724 v	s									
^v 13	^{+ ν} 18	1733 s	1733	s													
		1731 s	1731	s													
^v 12	⁺ ^v 20	1728 vs	1 7 1 0				1919 -										
°13	⁺ ^V 19	1710 m	1710	в 1 - 1	721	vs	1713 8	_ · .	1918		1715	•	1710		1710		
ິ6	4 stretch	1700 VS	1704	s 1	731	vs	1731 V	8.	1715	vs	1715	VS	1710	vs	1710	VS	
	·	1609 mg	1609	-					1609	8 	1710	vs			1701	~	
°13	• °20′ °9 [•] °21	1050 85	1695	в е					1694	-	1692	•			1701	ъ	
	± / ±		1000		621	_	1621 -	· .		-	1052	•	1621		1632		
16	18'12 16	1643 m	1631	۔ م	609	-	1607 a		1631	_	1632	me	1601	ma	1602	me	
້7 2ນ	0-0 stiften benu	1515 w	1512		515	-	1511 v		1511		1510	~	1510		1508	w	
24	ring str/NH bend	1472 ms	1461	• - vs 1	462	-	1461 m	- ·	1438	ve	1431	•	1431	- VR	1431	" vs	
- 8	ring bor, an ochu			1	457	m							1427	s	1427	s	
	1			-									1418	m	1418	8	
v_	ring str/NH bend	1399 vs	1397	vs 1	397	ms	1397 m	s :	1326	B 8 -	1321	8	1321	m	1321	m	
'9				1	395	s	1395 m	8	1316	s	1315	MS	1315	w	1315	mw	
				1	381	vw	1381 w						1393	vw	1392	w	
V10	CH/NH i.p. bend	1389 m 1386 mw		1	318	w			1264 1254	w m			1240 1234	vw w			
^v 11	ring stretch	1360 vw	1343	w 1	343	vw	1343 w	;	1379	V\$	1353	RW	1355	m '	1353	w	
									1310	w	1347	w			1330	w	
² ² 26		1313 vw		1	312	vw	1312 V	w									
		1304 vw	1304	vw 1	304	vw	1304 w	:	1300	W .							
				1	.273	w	1273 w								1240	vw	
				1	254	w	1254 w								1233	w	
· ^v 12	CH i.p. bend	1217 w	1312	w					1210 1201	w w	1241 1232	na W					
^v 13	ring str/NH bend	1184 vs	1187	vs 1 1	187 184	s ms	1187 s	:	1112	0 .	1111	m	1111	₩.	1111	w	
2v10			1169	w 1	169	vw	1169 v	w									
10				1	160	vw	1160 v	w				:					
V17	^{+ ν} 21		1150	w 1	150	vw	1150 v	w									
▲ f ,	**		1147	w 1	147	VW.	1147 v	w									
0.		1100	1125	vw 1	115	w	1115 W										
² ² 27		1072	1100	vw 1	079	ww	1004	Ŵ									
^v 14	Mn/Cn 1.p. bend	1073 W 1066 W	1195	w 1 w	.018	10	1204 W										
			1082	w .													
2v20				1	1018	w			1010	¥¥.	1010	ww	1010	vw	1010	vw	
V ₁₅	ring i.p. def.	1001 ^a	973	w .	975	w	968 v	w	970	w	959	w	959	vw	959	w	
(v14)	ND i.p. bend								918	w	926	w	881	WW	880	mw	

Table 2. Bands observed (cm^{-1}) in the vibrational spectra of monomer uracil and deuterated uracils in argon matrices at 20 K

^v 16	ring str/NH bend	958	w	96 5	w	1047	118	1047	3 8	821	mw	849	m	849	w	849	w
' ₁₀)	C ₅ D i.p. bend			926	w			926	vw			975	vw			975	VW
'19 [']	+ v ₂₁					926	vw							926	VW	926	VW
						850	w										
						804	n w							804	R W		
22	C ₆ H o.p. bend	842	VW .	804	w					838	w	804	w				
'12 ⁾	C ₀ D i.p. bend					784	w	784	w					784	w	783	w
23	C ₄ =0/CH o.p. bend	804	8	776	ns	777	n	777	m	803	8	776	N 8	776	₩w	776	3
, 17	ring breathe	761	A					760	8								
						761	RS							758	BS		
24	C ₂ =0 o.p. bend	757	8	757		758	8	758	8	756	8	755	8	756	8	754	8
25	C ₅ H o.p. bend	718	w			702	w			718	vw						
26	N ₃ H o.p. bend	662	8	662	٧s	662 658	8 8	662 658	RS RS								
22 ⁾	C ₆ D o.p. bend																
18	ring i.p. def.	559 555	w w	591	m	591	т	591	D	541	w	575	w	575	w	575	w
27	N ₁ H o.p. bend	551	m	552	w	551	mw	550	w								
19	C=O i.p. bend	536	w	539	лw	537	w	537	w	(541	w)	538	vw	539	w	532	w
25)	C ₅ D o.p. bend			520	w			520	w								
20	ring i.p. def.	516	R	512	m	515 512	mw mw	512	m	505	MS	506	ms	507	m	507	D1 W
26 ⁾	N ₃ D o.p. bend									501	m	500	ms	498	m	498	D)
														412	w	413	w
27)	N ₁ D o.p. bend									420	w			370	nw	370	RI W
28	ring o.p. def.			393	w	358	w	358	w	370	s	370	ms	343	w	343	w
21	C=O i.p. bend	391	n	390	a.	390	m	390	m	388	ms	386	ź۵	386	m	386	bs.
29	ring o.p. def.																
30	ring o.p. def.																

Table 2	(Contd.)
---------	----------

^aFrom Raman spectrum (not observed in i.r.).

Table 3.	Bands observed (cm ⁻¹	¹) in the vibratio	nal spectra	of uracil and
	deuterated uracils	in the solid pha	ise at 20 K	

mode	approx description	uracil	5,6-d	1,3-d	per-d
ν ₁	N ₁ H stretch	3210 sh	3210 sh	2330 ms	2302 s
°₂	N ₃ H stretch	3110 s	3100 s	2270 s	2265 s
[∨] з	C ₅ H stretch	3080 sh ^a	2310 w	3092 m	
[∨] 4	C ₆ H stretch		2295 sh	3000 w	
v ₆ +	v 9			2946 mw	2935 w
v; +	^v 13	2945 w	2940 m	2834 m	2830 w
∨ 8 +	[∨] 9	2865 w	2865 w		
² ∨ 9		2830 w	2830 w		
×15 ·	⁺ ^v 17	1765 w			
ັ 5	C2=0 stretch	1718 vs	1720 vs	1700 vs	1700 vs
ν 6	C ₄ =0 stretch	1675 s	1675 s	1630 vs	1630 vs
×7	C=C str/CH bend	1640 s	1630 s	1600 sh	1600 sh
² ² 24		1520 vw	1520 vw	1515 w	1530 sh
×8	ring str/NH bend	1455 m	1454 m	1460 m	1455 m
[∨] 9	ring str/NH bend	1424 s	1420 ms	1335 m	1332 w
v10	CH/NH i.p. bend	1395 mw		1280 w	

				_					_	_
v11	ring stretch	• • 1	344	vw	1354	ŵ.	1395	w	1352	w
v ₁₃	ring str/NH bend	1	240	8	1239		1140	20	1140	w
v ₁₂	CH i.p. bend	13	220	sh						
v ₁₄	NH/CH i.p. bend	10	95	w	1290	w	968		955	mw
v ₁₅	ring i.p. def.	10	005	w	984	RW	980	sh	975	sh
v ₁₆	ring str/NH bend	9	94	m	1094	. -	878	m	875	w
(v10)	C ₅ D i.p. bend	-			895	sh '				
v26	N ₃ H o.p. bend		55	m	868			κ.,		
(v12)	C _c D i.p. bend				846	w			842	w
v22	C _e H o.p. bend	٤	25	m			830	m		
v ₂₇	N ₁ Ho.p. bend	ε	05.	sh	830	sh		÷		
V 93	$C_A = 0/CH \text{ o.p. bend}$									
v ₁₇	ring breathe	. 7	76	w	777	w .	778	wb	776	vw
v24	C ₂ =0 o.p. bend	. 7	61	10	761	m	764	ns	763	m
v25	C ₅ H o.p. bend						740	w		
(v26)	N ₃ Do.p. bend	1.1					615	¥	604	w
(v ₂₇)	N ₁ Do.p. bend						589	vc		
(v_{22})	CD o.p. bend				611	VW				
ν ₁₈	ring i.p. def.	5	88	w .	580	vw				
V19	C=O i.p. bend	5	64 1	2	562	W	562		557	*
(v ₂₅)	C ₅ Do.p. bend				552	sh				
v20	ring i.p. def.	5	44	5	538	5	534	8	532	m
ν ₂₁	C=O i.p. bend	4	35 s	3	434	8	430		432	8
V28	ring o.p. def.	. 4	00 1	sh	400	sh	400	sh	400	sh
ν ₂₉	ring o.p. def.	1	94 1	d						
· V 30	ring o.p. def.									

Table 3 (Contd.)

^aKBr disc. ^bRef. [5]. ^cRef. [20]. ^dRef. [16].

Fig. 2. Calculated vibrational spectra of uracil and deuterated derivatives from NISHIMURA et al. [19] (wavenumbers scaled by a constant factor of 0.90).

1,3-Deuterated uracil in an argon matrix exhibited monomer ND stretching bands at 2593 and 2549 cm⁻¹, with relative intensities similar to those of the NH stretching modes of uracil, but in *per*deuterated uracil the lower frequency component splits to give a pair of weak bands at 2567 and 2539 cm⁻¹ (Fig. 3). The 1,3,5- and 1,3,6-deuterated uracils gave a similar pattern, which may be attributed to Fermi resonance between the N₃D stretch and the combination 1710 + 849 cm⁻¹. The aggregated or solid N-deuterated uracils gave a pair of bands around 2300 cm⁻¹.

CH stretching modes

The CH (or CD) stretching modes of the monomeric uracils were too weak to be observed with certainty in the i.r. spectra in argon or nitrogen matrices. Similar behaviour was found in previous studies of maleimide [26] and barbituric acid derivatives [27-29]. In the Raman spectrum of uracil in an argon matrix, a band was observed at 3084 cm^{-1} . NISHIMURA et al. [19] calculated 3068 and 3031 cm⁻¹ (after scaling) for the C₅H and C₆H stretching modes respectively, thus the single observed band has been assigned tentatively to the C5H stretch. In the i.r. spectrum of solid uracil, SUSI and ARD [5] assigned the strong band near 3100 cm⁻¹ to a CH stretching mode, but comparison with the spectrum of the 5,6-deuterated uracil shows that this should be assigned to NH stretching with the low frequency shoulder (ca. $3080 \,\mathrm{cm}^{-1}$) as the CH stretching modes. This agrees well with the i.r. spectrum of solid 1,3-deuterated uracil which has a medium intensity band at 3092 cm^{-1} .

Fig. 3. Infrared spectra in the NH(ND) stretching region of (A) uracil, (B) 5,6-deuterated uracil, (C) 1,3-deuterated uracil, (D) per-deuterated uracil. In each case, the top spectrum is the solid at 20 K, the middle spectrum a concentrated argon matrix and the bottom spectrum a dilute argon matrix.

C=O and C=C stretching modes

The 1800-1600 cm⁻¹ region of uracil and its deuterated derivatives was found to contain a considerable number of medium to strong bands. Only three fundamentals, which may be approximately described as the C₂=O, C₄=O and C=C stretching modes, are expected in this region. The (scaled) calculated wavenumbers are 1775, 1748 and 1664 cm⁻¹ respectively. The C=C stretching mode was readily identified at 1643 cm^{-1} in the i.r. spectrum of uracil in an argon matrix, with a corresponding intense band in the Raman spectrum. This mode was found to shift to 1631-1632 cm⁻¹ in the 5-, 1,3- and 1,3,5deuterated derivatives, but to 1601-1608 cm⁻¹ in the uracils deuterated in the 6 position. This agrees well with the potential energy distribution of NISHIMURA et al. [19], which shows an appreciable contribution from C_6 -H bending. Bands at 1631-1632 cm⁻¹ in the uracils deuterated in the 6 position may be assigned to combinations $1047 + 591 \text{ cm}^{-1}$ (6- and 5,6-deuterated uracil) or $849 + 783 \text{ cm}^{-1}$ (1,3,6- and *per*-deuterated uracil), intensified by Fermi resonance with the C=C stretching mode. The C=O stretching region is very complex in uracil, becoming simpler as the degree of deuteration increases (Fig. 4). There is a general

Fig. 4. Schematic representation of the C=O and C=C stretching region of the i.r. spectrum of monomeric uracil and deuterated derivatives in argon matrices. The absorbances have been scaled relative to the band at 757 cm⁻¹ in each spectrum.

pattern of two very strong bands (assigned to v_5 and v_6) with an intermediate strong band, which has been assigned as $v_{15} + v_{17}$ (these modes showing only small shifts on deuteration). The deuteration behaviour of the remaining bands allows tentative assignments to be made (Tables 1 and 2), but with a large number of possible combinations and the perturbations resulting from multiple Fermi resonance interactions little weight should be attached to these assignments. In the associated or solid uracils the C=O stretching modes shift to lower frequencies (Table 3) and little evidence remains of the various combination bands observed in the monomer matrix spectra. BANDEKAR and ZUNDEL [21, 22] ascribe the C=O band splittings in solid uracil to C=O transition dipole-dipole coupling. Since the splittings observed in the monomer spectra can only be due to Fermi resonance interactions, it would seem more plausible that any splittings present in the solid phase spectrum have a similar origin.

Other in-plane modes

The calculations of NISHIMURA *et al.* [19] predict strong mixing of the NH and CH in-plane bending modes with the ring stretching vibrations. The observed matrix spectra confirm this general picture. Figure 5 compares the spectra of argon matrices containing a mixture of monomer and associated uracil and containing predominantly monomer uracil. It can be seen that a number of absorptions shift to significantly higher wavenumbers in the associated species, particularly the modes absorbing at 1399, 1184, 958 and 391 cm⁻¹ in the monomer which all

Fig. 5. Infrared spectra of a concentrated matrix (upper) and a dilute matrix (lower) of uracil in argon.

exhibit prominent absorptions due to the associated species $ca. 25 \text{ cm}^{-1}$ above the monomer wavenumber. The NH out-of-plane bending modes also shift to much higher wavenumbers, appearing at around 850 cm^{-1} in the associated species. The monomer spectra of the various deuterated species are compared in Fig. 6.

The highest frequency mode (v_8) was found at 1472 cm⁻¹ for uracil in an argon matrix, shifting to 1461 cm⁻¹ in 5,6-deuterated uracil, 1438 cm⁻¹ in 1,3-deuterated uracil and 1431 cm⁻¹ in the *per*-deuterated derivative. This pattern agrees well with the quantum mechanical calculations [19], which give a PED of ring stretching (50) and N₁H bending (26) with a calculated

wavenumber (scaled) of 1483 cm^{-1} for uracil. Also in excellent agreement with these calculations, three fundamentals were found between 1400 and 1350 cm^{-1} : a strong band at 1399 cm^{-1} , a doublet (presumably due to matrix splitting, the corresponding absorption in a nitrogen matrix being a singlet at 1388 cm^{-1}) at 1389 and 1386 cm^{-1} , and a very weak band in the i.r. spectrum, with an intense counterpart in the Raman, at 1360 cm^{-1} . The deuteration behaviour of these bands was entirely consistent with the assignment of the highest and lowest wavenumber bands as ring stretching modes (v_9, v_{11}) and the $1389/1386 \text{ cm}^{-1}$ doublet as a CH bending/NH bending mode (v_{10}). The 1399 cm^{-1} mode must have an

Fig. 6. Schematic representation of the 1600–200 cm⁻¹ region of the i.r. spectrum of monomeric uracil and deuterated derivatives in argon matrices. The absorbances have been scaled relative to the band at 757 cm⁻¹ in each spectrum.

appreciable contribution from NH bending, shown by its association behaviour and the shift to lower wavenumbers in the 1,3-deuterated derivatives. In 1,3-deuterated uracil, v_{10} appeared as a doublet at 1264/1254 cm⁻¹.

The next three modes show the poorest agreement with the calculations of NISHIMURA et al. [19], which predicted the Kekule ring stretch at 1247 cm^{-1} , the CH out-of-phase bending mode at 1171 cm^{-1} and a ring stretching mode at 1069 cm⁻¹. For uracil, the (1217, observed wavenumbers 1184 and $1073/1066 \text{ cm}^{-1}$) agree reasonably well with the predicted values, but the deuteration behaviour was not as predicted. The very strong band at 1184 cm^{-1} in the i.r. spectrum of uracil (which shifts to higher wavenumbers in the associated species) has obvious counterparts at 1187 cm⁻¹ in 5,6-deuterated uracil and at 1111-1112 cm⁻¹ in 1,3- and per-deuterated uracil. It should thus be described as ring stretching/NH bending (v_{13}) . The 1217 cm⁻¹ band (v_{12}) seems to be mainly CH bending in character, while the $1073/1066 \text{ cm}^{-1}$ doublet (the splitting again being a matrix effect, with a single band in a nitrogen matrix at 1069 cm⁻¹) appears to be NH bending mixed with CH bending. In the deuterated uracils, the ND bending and CD bending modes are relatively weak and thus difficult to identify with certainty. Following the behaviour predicted by NISHIMURA et al. [19], we assign the bands around 900 cm⁻¹ in the 1,3-deuterated uracils to ND bending and bands at 926 cm^{-1} (5,6-deuterated), 975 cm^{-1} (per-deuterated) and 783–784 cm^{-1} as the CD bending modes.

The remaining modes are all ring stretching and deformation vibrations. The ring deformation mode v_{15} , predicted at 978 cm⁻¹, was identified from the Raman spectrum as a band at 1001 cm^{-1} in an argon matrix; only weak bands were found in this region of the i.r. spectrum. The ring stretching mode v_{16} was found in both i.r. and Raman spectra at 958 cm⁻¹ and the ring breathing mode v_{17} could be readily identified as the intense Raman band at 761 cm^{-1} . The deformation modes v_{15} and v_{17} were little affected by deuteration, but the ring stretching mode v_{16} appeared to mix strongly with the CD and ND bending modes, shifting to 1047 cm^{-1} in 5,6-deuterated uracil, 821 cm^{-1} in 1,3deuterated uracil and 849 cm⁻¹ in the per-deuterated derivative. This pattern of shifts is quite similar to that predicted by NISHIMURA et al. [19]. Since the combination $v_6 + v_{16}$ exhibits a Fermi resonance interaction with the N_3D stretching mode (and not the N_1D stretching mode) in the 1,3,5-, 1,3,6- and per-deuterated uracils, v_{16} must contain a large contribution from N₃D bending in these compounds. The ring deformation mode v_{18} appeared as a doublet at 559/555 cm⁻¹ for uracil in an argon matrix (the 551 cm⁻¹ band was identified as the NH out-of-plane bending mode from its shift on doping with nitrogen), shifting to 591 cm⁻¹ in the C-deuterated derivatives. In 1,3-deuterated uracil v₁₈ appeared to be accidentally degenerate with v_{19} at 541 cm⁻¹, shifting to 575 cm⁻¹ in perdeuterated uracil. The remaining three modes were readily identified for uracil in an argon matrix as $536 \text{ cm}^{-1}(v_{19})$, $516 \text{ cm}^{-1}(v_{20})$ and $391 \text{ cm}^{-1}(v_{21})$, all exhibiting only small shifts on deuteration.

Carrying these assignments for monomeric uracil through to the solid phase spectra yielded an assignment (Table 3) which differs in several respects from that given by SUSI and ARD [5]. It is clear from the matrix spectra of uracil and its deuterated counterparts that the band at 1520 cm^{-1} in solid uracil, assigned by SUSI and ARD[5] as v_8 , should be assigned to the overtone $2v_{24}$. A very weak band at 1344 cm⁻¹ in the i.r. spectrum of solid uracil may be assigned as the counterpart of the 1360 cm⁻¹ mode of monomeric uracil. The remaining assignments for solid uracil are substantially the same (although the descriptions of the modes differ) as those of SUSI and ARD [5] apart from v_{21} . The strong band at 435 cm⁻¹ in the solid spectrum clearly corresponds to the monomer band at 391 cm^{-1} , which we have assigned to the in-plane mode since it is unaffected by deuteration whereas the nearby out-of-plane bending mode shifts to lower frequency in the deuterated derivatives (presumably due to mixing with the ND and CD out-of-plane bending modes). Similar differences occur in the assignments for the deuterated uracils.

Out-of-plane bending modes

Although the calculations of NISHIMURA et al. [19] were limited to the in-plane modes, the matrix spectra enabled the out-of-plane vibrations to be assigned with reasonable confidence. SUSI and ARD [5] assigned the CH out-of-plane bending modes of solid uracil to strong bands at ca. 820 and 760 cm⁻¹. The argon matrix spectrum of monomer uracil has intense bands at 804 and 757 cm⁻¹, but there are corresponding bands in the spectra of all the deuterated uracils (the 803 cm⁻¹ absorption shifting to 776 cm⁻¹ in the Cdeuterated derivatives). These bands must thus be assigned to C=O out-of-plane bending vibrations. Since the higher frequency mode is clearly mixed with the CH out-of-plane bending modes, it is likely to be the $C_4=O$ bending mode rather than the $C_2=O$ bending mode. The CH out-of-plane bending modes seem to be rather weak and have been tentatively assigned to 842 and 718 cm⁻¹ for uracil in an argon matrix, the corresponding CD bending modes also being difficult to identify with certainty.

The NH out-of-plane bending modes were easily identified as 662 cm^{-1} and 551 cm^{-1} for uracil in an argon matrix, shifting to $686/682 \text{ cm}^{-1}$ and 592 cm^{-1} in a nitrogen matrix; similar shifts occurred in the nitrogen-doped argon matrix spectra. Large shifts of the NH out-of-plane bending modes between argon and nitrogen matrices were found in previous studies of maleimide [26] and barbituric acid derivatives [27-29]. In solid uracil or associated uracil in matrices the NH out-of-plane bending modes shift up to *ca*. 850 cm⁻¹. Comparison with 1-methyl uracil and 3-methyl uracil has shown [20] that the higher wavenumber band in the solid spectrum is the N₃H mode and the lower wavenumber band the N₁H mode; it has been assumed that the same order applies to monomeric uracil. In matrices, there seems to be little mixing of the NH and CH out-of-plane vibrations but in the solid phase the modes lie in the same frequency region and thus there may be appreciable mixing. The normal coordinate calculations of BANDEKAR and ZUNDEL [22] support this view. Comparison of the monomer and solid spectra shows that the band assigned to the C₂=O bending mode in the monomer spectrum remains a strong band in the i.r. spectrum of the solid, whereas the band assigned to $C_4=O$ bending (mixed with CH bending) in the monomer spectrum is not readily identified in the solid spectrum. Possibly the weak bands in the i.r. spectra at ca. 776 cm^{-1} should be assigned to this mode rather than to the ring breathing mode, which was observable only in the Raman spectra for monomeric uracil.

In 1,3-deuterated uracil, the ND out-of-plane bending modes were identified as 501 and 420 cm⁻¹ (a shift of ca. 1.31) in an argon matrix. In *per*-deuterated uracil there appears to be considerable mixing of the ND, CD and ring bending modes (the ring deformation mode v_{28} also shifts from ca. 400 cm⁻¹ in uracil to 358 cm⁻¹ in 5,6-deuterated uracil, suggesting mixing with the CD bending modes). In the spectra of the solid 1,3deuterated uracils, the ND out-of-plane bending modes appear at ca. 620 cm⁻¹. The two lowest frequency ring deformation modes, v_{29} and v_{30} , were below the range covered by the matrix experiments.

DISCUSSION

The generally excellent agreement between the matrix spectra of monomeric uracil and the calculated spectrum of NISHIMURA *et al.* [19] shows that their force field is a good approximation for the in-plane modes. Although hydrogen bonding shifts many of the modes appreciably, the solid spectra may be assigned analogously to the monomer. The out-of-plane modes could not be assigned with complete certainty, the change in potential energy distribution between the monomer and solid spectra (as a result of the large shift in the NH bending modes) making comparison difficult. The assignment for monomer uracil shows good agreement with the CNDO calculation of HARSANYI and CSASZAR [32].

The spectrum of the associated species formed by uracil in matrices differs significantly from the spectrum of the solid phase. The NH stretching absorption is shifted to lower frequencies than in the solid, and the NH out-of-plane bending to higher frequencies, implying that the strength of interaction is greater in the associated species in matrices than in the solid. There is some evidence for selective participation in the hydrogen bonding in the associated species by particular groups: in dilute matrices the N_1 H monomer stretching band is more intense than the N_3 H band, whereas in concentrated matrices the intensities reverse, suggesting participation of the N₁H group in hydrogen bonding. Similarly, in the C=O out-of-plane bending region, a prominent aggregate band appeared on the high frequency side of the C₂=O mode, whereas the C₄=O mode showed no such change. Thus the associated species in matrices is most probably a cyclic dimer, linked by C₂=O ... H-N₁ hydrogen bonds, whereas in the solid phase there is a network of hydrogen bonds involving the C₄=O and both N-H groups [23, 24].

The spectrum of the water-doped uracil in argon matrix also provided some structural information. As in the associated uracil species, the $C_2=O$ out-of-plane bending mode shifted to higher frequency while the $C_4=O$ mode was unaffected. Thus the uracil-water complex appears to be formed by the water molecule hydrogen bonding to the $C_2=O$ group.

Acknowledgement—We are grateful to M. F. LAUTIÉ (Service de Spectrochimie Infrarouge et Raman, C.N.R.S., Thiais) for preparing the deuterated uracils.

REFERENCES

- [1] C. L. ANGELL, J. chem. Soc. 504 (1961).
- [2] M. TSUBOI, Y. KYOGOKU and T. SHIMANOUCHI, Biochim. biophys. Acta 55, 1 (1962).
- [3] T. SHIMANOUCHI and I. HARADA, J. chem. Phys. 41, 2561 (1964).
- [4] R. C. LORD and J. G. THOMAS, JR., Spectrochim. Acta 23A, 2551 (1967).
- [5] H. SUSI and J. S. ARD, Spectrochim. Acta 27A, 1549 (1971).
- [6] M. TSUBOI, in IUPAC 23rd Int. Congress of Pure and Applied Chemistry, Vol. 7, 145 (1971).
- [7] H. T. MILES, T. P. LEWIS, E. D. BECKER and J. FRAZIER, J. biol. Chem. 248, 1115 (1973).
- [8] K. A. HARTMAN, R. C. LORD and J. G. THOMAS, JR., in Physicochemical Properties of Nucleic Acids, Vol. 2 (edited by J. DUCHESNE). Academic Press, London (1973).
- [9] M. TSUBOI, S. TAKAHASHI and L. HARADA, in Physicochemical Properties of Nucleic Acids, Vol. 2 (edited by J. DUCHESNE). Academic Press, London (1973).
- [10] H. SUSI and J. S. ARD, Spectrochim. Acta 30A, 1843 (1974).
- [11] Y. NISHIMURA, A. Y. HIRAKAWA and M. TSUBOI, Chem. Lett., Tokyo 907 (1977).
- [12] M. J. NOWAK, K. SZCZEPANIAK, A. BARSKI and D. SHUGAR, Z. Naturf., Teil C 33, 876 (1978).
- [13] Y. NISHIMURA, A. Y. HIRAKAWA and M. TSUBOI, in Advances in Infrared and Raman Spectroscopy, Vol. 5, Ch. 4 (edited by R. J. H. CLARK and R. E. HESTER). Heyden, London (1978).
- [14] Y. NISHIMURA, H. HARUYAMA, K. NOMURA, A. Y. HIRAKAWA and M. TSUBOI, Bull. chem. Soc. Japan 52, 1340 (1979).
- [15] M. J. NOWAK, K. SZCZEPANIAK, A. BARSKI and D. SHUGAR, J. molec. Struct. 62, 47 (1980).
- [16] C. P. BEETZ, JR. and G. ASCARELLI, Spectrochim. Acta 36A, 299 (1980).
- [17] W. D. BOWMAN and T. G. SPIRO, J. chem. Phys. 73, 5482 (1980).
- [18] M. SHIBATA, T. J. ZIELINSKI and R. REIN, Int. J. Quant. Chem. 18, 323 (1980).
- [19] Y. NISHIMURA, M. TSUBOI, S. KATO and K. MOROKUMA, J. Am. chem. Soc. 103, 1354 (1981).
- [20] J. BANDEKAR and G. ZUNDEL, Spectrochim. Acta 38A, 815 (1982).

- [21] J. BANDEKAR and G. ZUNDEL, Spectrochim. Acta 39A, 337 (1983).
- [22] J. BANDEKAR and G. ZUNDEL, Spectrochim. Acta 39A, 343 (1983).
- [23] G. S. PARRY, Acta crystallogr. 7, 313 (1954).
- [24] R. F. STEWART and L. H. JENSEN, Acta crystallogr. 23, 1102 (1967).
- [25] A. J. BARNES, in Molecular Interactions, Vol. 1, Ch. 9 (edited by H. RATAJCZAK and W. J. ORVILLE-THOMAS). Wiley, London (1980).
- [26] A. J. BARNES, L. LE GALL, C. MADEC and J. LAURANSAN, J. molec. Struct. 38, 109 (1977).
- [27] A. J. BARNES, M. A. STUCKEY, W. J. ORVILLE-THOMAS,

L. LE GALL and J. LAURANSAN, J. Molec. Struct. 56, 1 (1979).

- [28] A. J. BARNES, L. LE GALL and J. LAURANSAN, J. molec. Struct. 56, 15 (1979).
- [29] A. J. BARNES, L. LE GALL and J. LAURANSAN, J. molec. Struct. 56, 29 (1979).
- [30] M. SZCZESNIAK, M. J. NOWAK, H. ROSTKOWSKA, K. SZCZEPANIAK, W. B. PERSON and D. SHUGAR, J. Am. chem. Soc. 105, 5969 (1983).
- [31] M. MALTESE, S. PASSERINI, S. NUNZIANTE-CESARO, S. DOBOS and L. HARSANYI, J. molec. Struct. 116, 49 (1984).
- [32] L. HARSANYI and P. CSASZAR, Acta chim. hung. 113, 257 (1983).