

Journal of Fluorine Chemistry 69 (1994) 231-236

Reactions of cycloalkanecarboxylic acids with SF_4 . II. Fluorination of *gem*-dichlorocyclopropanecarboxylic acids with SF_4^*

Yu.M. Pustovit, P.I. Ogojko, V.P. Nazaretian*, A.B. Rozhenko

The Ukrainian Academy of Sciences, Institute of Organic Chemistry, Kiev 252094, Ukraine

Received 14 May 1993; accepted 19 September 1993

Abstract

Treatment of gem-dichlorocyclopropanecarboxylic acids with SF₄ yields many rearranged products, i.e. 1,1-difluoro-substituted olefins. The mechanism of the rearrangement is discussed.

Keywords: Cycloalkanecarboxylic acids; Sulphur tetrafluoride; Rearrangement mechanism; Stereochemistry; NMR spectroscopy; IR spectroscopy

Scheme 1.

1. Introduction

In contrast to cyclopropane-monocarboxylic acid [1], cyclopropanecarboxylic acids having more than one carboxylic group when treated with SF₄ readily undergo fluorination to yield the corresponding polytrifluoromethylcyclopropanes and bicyclic ethers [2]. Hence, it may be assumed that the introduction of other electronegative substituents, e.g. chlorine atoms, should also favour fluorination of the respective cyclopropanecarboxylic acids. We have found that treatment of gemdichloro-substituted cyclopropanecarboxylic acids with SF₄ yields the corresponding trifluoromethylcyclopropanes as the minor products, with olefins being the major products (see Scheme 1).

2. Experimental

¹H and ¹⁹F NMR spectra were measured with a Bruker WP-200 NMR spectrometer using TMS and CFCl₃ as internal standards, and CDCl₃ as the solvent (acetone-d₆ for compounds 5 and 8). The ¹⁹F upfield chemical shift values are negative. ¹³C NMR spectra were measured with a Varian 300 NMR spectrometer using TMS as internal standard, and CDCl₃ as the solvent (acetone-d₆ for compounds 5 and 8). Gas-liquid

C1 COOH
$$SF_4$$

92%
1

C1 CF3 + F_2C =CHCH2CCI2F + F_2C =CHCH=CCI2

2 5% 3 78% 4 9%

C1 COOH SF_4 C1 CF3 + F_2C =CH-CH-CCI2F CF3

5 6 6% 7 74%

C1 COOH SF_4 C1 CF3 + F_2C =CH-CH-CCI2F CF3

7 70%

chromatography was carried out with a Chrom 5 chromatograph fitted with FID using helium as the carrier gas, and employing a stainless-steel column (2500×3) mm) filled with 10% polyphenylmethylsiloxane on Chromatone AW (0.20–0.25 mm). Preparative GLC was carried out with a PACHV 07 chromatograph fitted with a thermal conductivity detector using a stainless-steel column (2600×12) mm) filled with 10% polyphenylmethylsiloxane on Chromatone N-AW-HMDS (0.32-0.40) mm) and employing helium as the carrier

^{*}Dedicated to Professor L.M. Yagupolskii on the occasion of his 70th birthday.

^{*}Corresponding author.

Table 1 Reactions of carboxylic acids with SF₄

Acid		SF ₄ (mmol)	Reaction conditions		Reaction product(s), yield (%)
No.	mmol	(minor)	Temp. (°C)	Time (h)	(10)
1	20	110	140	4	2 , 5; 3 , 78; 4 , 9
5	20	120	140	4	6 , 6; 7 , 74
8	50	300	140	6	9, 11; 7, 70

C1

COF

$$COF$$
 $FCOSF_3$
 CI
 C

Scheme 2.

$$\begin{array}{ccccc}
C1 & & & & & & & & & & \\
C1 & & & & & & & & & \\
C1 & & & & & & & & \\
\hline
C1 & & & & & & & & \\
\hline
C1 & & & & & & & \\
C1 & & & & & & & \\
\hline
C1 & & & & & & & \\
\hline
C1 & & & & & & \\
C1 & & & & & & \\
\hline
C1 & & & & & & \\
\hline
C1 & & & & & & \\
\hline
C1 & & & & & & \\
\hline
C1 & & & & & & \\
\hline
C1 & & & & & & \\
\hline
C1 & & & & & & \\
\hline
C1 & & & & & & \\
\hline
C1 & & & & & & \\
\hline
C1 & & & & & & \\
\hline
C1 & & & & & & \\
\hline
C1 & & & & & & \\
\hline
C1 & & & & & & \\
\hline
C1 & & & & & & \\
\hline
C1 & & & & & & \\
\hline
C1 & & & & & & \\
\hline
C1 & & & & & & \\
\hline
C1 & & & & & \\
\hline
C1 & & & & & & \\
\hline
C1 & & & & & & \\
\hline
C1 & & & & & & \\
\hline
C1 & & & & & & \\
\hline
C1 & & & & & & \\
\hline
C1 & & & & & & \\
\hline
C1 & & & & & & \\
\hline
C1 & & & & & & \\
\hline
C1 & & & & & & \\
\hline
C1 & & & & & & \\
\hline
C1 & & & & & & \\
\hline
C1 & & & & & & \\
\hline
C1 & & & & & & \\
\hline
C1 & & & & & & \\
\hline
C1 & & & & & & \\
\hline
C1 & & & & & & \\
\hline
C1 &$$

Scheme 3.

gas. All boiling and melting points are reported uncorrected. Vapour-phase infrared spectra were measured with a UR-20 (Zeiss) spectrometer.

2,2-Dichlorocyclopropanecarboxylic acid (1)

KMnO₄ (33 g, 210 mmol) was added to a stirred solution of 2,2-dichlorocyclopropylmethanol [3] (14.1 g, 100 mmol) and 6.7 g (27 mmol) of MgSO₄·7H₂O in 100 ml of water at such a rate that the temperature was maintained at 75 °C. After addition was complete, the mixture was stirred for an additional 0.5 h. Excess permanganate was destroyed by the addition of methanol. The reaction mixture was filtered to remove MnO₂, acidified with dilute HCl to pH=2, and evaporated to dryness. The residue was extracted with hot acetone.

The solvent was removed under reduced pressure to yield crude 1 (13.0 g, 84%). Recrystallization from hexane afforded 1 as colourless crystals, m.p. 75 °C (lit. value [4]: m.p. 76 °C).

cis-3,3-Dichlorocyclopropan-1,2-dicarboxylic acid (8)

KMnO₄ (39 g, 247 mmol) was added to a stirred solution of cis-1,2-bis(oxymethyl)-3,3-dichlorocyclopropane 14 (10.26 g, 60 mmol) and 8 g (32 mmol) of MgSO₄·7H₂O in 100 ml of water at such a rate that the temperature was maintained at 75–80 °C. After addition was complete, the mixture was stirred for an additional 0.5 h. Excess permanganate was destroyed by the addition of methanol. The reaction mixture was filtered to remove MnO₂, acidified with dilute HCl to pH=2, and evaporated to dryness. The residue was extracted with hot acetone. The solvent was removed under reduced pressure to yield crude 8 (8.5 g, 71%). Recrystallization from CH₃COOH afforded 8 as colourless crystals.

trans-3-3,3-Dichlorocyclopropan-1,2-dicarboxylic acid (5)

cis-3,3-Dichlorocyclopropan-1,2-dicarboxylic acid (8) (7 g, 35 mmol) and 5 cm³ of concentrated HCl were

Table 2
Physical properties of compounds prepared

Compound	B.p./mmHg [m.p.] (°C)	d_4^{22} (g cm ⁻³)	n_{D}^{22}	Elemental analyses		
No.				Found (%)	Molecular formula	Calc.%
3ª	86/760	1.393	1.384	C 26.8	$C_4H_3Cl_2F_3$	26.8
				H 1.6		1.7
				Cl 39.5		39.6
				F 31.8		31.8
5	[218]	-	-	C 30.2	C ₅ H ₄ Cl ₂ O ₄	30.2
				H 2.0		2.0
				Cl 35.6		35.6
7 ⁵	93/760	1.534	1.355	C 24.4	$C_5H_2Cl_2F_6$	24.3
				H 0.8		0.8
				CI 28.7		28.7
				F 46.0		46.2
8	[195]	-	-	C 30.2	C ₅ H ₄ Cl ₂ O ₄	30.2
				H 2.0		2.0
				Cl 35.6		35.6
9	135/760	1.641	1.395	C 26.6	C ₅ H ₂ Cl ₂ F ₄ O	26.7
				H 0.8		0.9
				Cl 31.5		31.5
				F 33.7		33.8
13	107/10 [52]	-	-	C 42.5	$C_7H_{10}Cl_2O_2$	42.7
				H 5.1		5.1
				Cl 36.0		36.0
14	121/0.3 [71]	_	-	C 35.1	$C_5H_8Cl_2O_2$	35.1
				H 4.6		4.7
				Cl 41.4		41.5
15 ^c	78/20	1.374	1.498	C 39.2	C ₅ H ₆ Cl ₂ O	39.2
				H 3.9		4.0
				Cl 46.3		46.3

 $^{^{}a}IR(cm^{-1}): 1790 (C=C).$

heated at 200 °C (1 h) in a sealed tube and then cooled to room temperature. The colourless precipitate was collected by filtration and dried *in vacuo* at 100 °C. Yield, 6.8 g (97%).

2.1. Treatment of carboxylic acids with SF_4 . General procedure

An acid and SF_4 were reacted in a stainless-steel cylinder using the appropriate amounts of reactant, reaction time and temperature as indicated in Table 1. The gaseous products were released and the liquid residue poured into ice/water, the organic layer separated, dried over P_2O_5 and purified by distillation or preparative GLC, as necessary. The physical properties and analyses of the products are listed in Table 2 and the NMR spectral data is recorded in Table 3.

1,1-Dichlorobuta-1,3-diene (11)

2,2-Dichlorocyclopropylmethanol (10) (4.2 g, 30 mmol) was added dropwise to P_2O_5 (4.30 g, 30 mmol).

The reaction mixture was warmed for some time with a flame and the low boiling products were then distilled off. The product with b.p. 103 °C (decomp.) was collected (1.9 g, 51%) and identified as 1,1-dichlorobuta-1,3-diene (11) [5].

Cisoid-4-methyl-8,8-dichloro-3,5-dioxabicyclo[5.1.0]-octane (13)

A solution consisting of 1120 g (20 mol) KOH in 1 dm³ of water was added to a vigorously stirred solution of freshly distilled *cis*-2-butene-1,4-diol acetal (12) (114 g, 1 mol) in 810 cm³ of CHCl₃. During this procedure, the reaction temperature was maintained below 30 °C by means of a cold water bath. Subsequently, the reaction mixture was left at room temperature for 8 h. The resulting precipitate was filtered off and washed with CHCl₃ (3×100 cm³). The organic layer was separated, washed with water (3×300 cm³), dried over sodium sulfate and concentrated *in vacuo*. The residue was distilled under reduced pressure. Yield, 60 g (30.5%).

^bIR(cm⁻¹): 1763 (C=C).

[°]Lit. value [6]: b.p. 80 °C/15 mmHg; $n_D^{22} = 1.4982$.

Table 3 NMR data of compounds prepared

Formula	Nucleus No.	Signal struct.	Chemical shift (ppm)	Coupling constants (Hz)
Ž 4 H ÇF ₃				
3 C C 1 1	1	m	2.59	
H FI H	2, 3	m	1.88-2.20	
1 C1 2	4	d	64.5ª	$^{3}J_{4,1}=7$
- 4 8 1 9 3 F _{5 7 C} H ₂ -CCl ₂ F	1	m	3.17	$^{3}J_{1,2} = 7.6; \ ^{3}J_{1,3} = 13;$
F _δ 7 CH ₂ -CC 1 ₂ F 5 C=C ₂	2		4.40	${}^{4}J_{1,4(5)} = 1.4$ ${}^{3}J_{2,1} = 7.6; {}^{3}J_{2,4} = 23;$
F Н 3	2	m	4.40	$^{3}J_{2,5} = 1.4$
_	3	t	-54.0	$^{3}J_{3,1} = 13$
	4	d d	-87.5	$^{2}J_{4,5} = 31.5; \ ^{3}J_{4,2} = 23$
	5	d d	- 84.7	$^{2}J_{5,4} = 31.5; \ ^{3}J_{5,2} = 1.4$
	6 {H}	d d	158.3	${}^{1}J_{6,4(5)} = 289; {}^{1}J_{6,5(4)} = 292$
	7 {H}	m	71.7	${}^{2}J_{7,4(5)} = 19; {}^{2}J_{7,5(4)} = 29.5;$ ${}^{3}J_{7,3} = 4.4$
	8 {H}	d d	42.9	${}^{2}J_{8,3} = 25.3; {}^{3}J_{8,4} = 5.9;$ ${}^{3}J_{8,5} = 5.9$
	9 {H}	m	119.8	${}^{1}J_{9,3} = 298; {}^{4}J_{9,4(5)} = 3.7;$ ${}^{4}J_{9,5(4)} = 5.1$
r H CI	1	d	6.35	$^{3}J_{1,2} = 11$
F. C=C	1		5.19	${}^{3}J_{2,1} = 11; \ {}^{3}J_{2,3} = 24$
4 C=C 2 CI	2	d d		
ř Ĥ	3	d d	-82.3	${}^{2}J_{3,4} = 15; \ {}^{3}J_{3,2} = 24$
4 ^b	4	d	- 84.4	$^{2}J_{4,3}=15$
CI 4 CI	1	s	3.00	
1 C 5 2 H 3 C00H	2	b s	10.0	
\ <u>-</u>	3	s	38.0	
H000 H	4	S	58.9	
5	5	s	165.9	
1 2 H CF ₃				
2	1	m	2.76	
F ₃ c C H '	2	d	64.5°	$^{3}J_{2,1}=4$
6				2 2
11 6 CF ₃ 4 9 1 10 3	1	m	3.97	${}^{3}J_{1,3} = 7; \ {}^{3}J_{1,6} = 7;$ ${}^{3}J_{1,2} = 10$
4 9 1 10 3 F 7 8 CH-CC 1 2 F	2	m	4.55	$^{3}J_{2,1} = 10; \ ^{3}J_{2,4} = 22$
5 C=C 2	3	m	- 54.5	$^{3}J_{3,1}=7;\ ^{4}J_{3,6}=14$
F H	4	t	-81.6	$^{2}J_{4,5} = 22; \ ^{3}J_{4,2} = 22$
7	5	d	-80.3	${}^{2}J_{5,4} = 22$
	6	m	-65.5	${}^{3}J_{6,1} - 7; {}^{4}J_{6,3} - 14$
	7 {H}	d d	159.7	${}^{1}J_{7,4(5)} = 289; {}^{1}J_{7,5(4)} = 294$
	8 {H}	d d	71.2	${}^{2}J_{7,4(5)} = 18; {}^{2}J_{7,5(4)} = 37$
	9 (H)	m	54.8	$^{2}J_{9,3} = 29.8; \ ^{2}J_{9,6} = 29;$ $^{3}J_{9,4} = 6.8; \ ^{3}J_{9,5} = 6.8$
	10 {H} 11 {H}	d q	117.4 122.9	$^{1}J_{10,3} = 300$ $^{1}J_{11,6} = 282$
CI CI				511,6 202
1 6 1	1	S	3.09	
$H_3 / J_3 / H$	2	b s	9.9	
2 5 C C 5 2 HOOC COOH	3	S	36.7	
	4	S	59.2	
8	5	s	156.6	

(continued)

Table 3 (continued)

Formula	Nucleus No.	Signal struct.	Chemical shift (ppm)	Coupling constants (Hz)
CI 6 CI	1	m	3.92	$^{3}J_{1,2}=14$
1 C 1	2	AB	-57.0	$^{2}J_{2,3} = 154$
3 C 3	3	AB	-82.6	$^{2}J_{3,2}=154$
3 F ₁ 4 4 F 2 F	4	m	125.9	${}^{1}J_{4,2} = 262; {}^{1}J_{4,3} = 262;$ ${}^{3}J_{4,2(3)} = 2.3; {}^{3}J_{4,3(2)} = 6.5$ ${}^{2}J_{5,2(3)} = 29; {}^{2}J_{5,3(2)} = 42$
F o F	5	d d	37.7	${}^{2}J_{5,2(3)} = 29; {}^{2}J_{5,3(2)} = 42$
9	6	t	56.5	$^{3}J_{6,2(3)} = 7.6$
4 2 H, 7 8,C1	1,2	m	5.20–5.44	
H 5 6 C=C	3,4	m	6.33-6.57	
1 C=C 3 CI	5 {H}	s	120.5	
11	6(7) {H}	s	129.3	
••	7(6) {H}	s	131.0	
רו נו	8 {H}	s	122.2	
3 में 5				
ң с—с н	1	d	1.30	$^{3}J_{1,5} = 5.1$
H O. O H	2	m	2.22	
	3	m	3.61-3.74	
r H CH₃	4	m	4.46-4.58	
13	5	q	4.58	$^{3}J_{5,1} = 5.1$
ع دار دا ع				
₹ ₩ ₹ ₩ ₹	1(2)	d d	3.55	${}^{2}I_{12} = 12 \cdot {}^{3}I_{122} \cdot {}_{2} = 8$
, C	2(1)	d d	3.93	${}^{2}J_{1,2} = 12; {}^{3}J_{1(2), 3} = 8$ ${}^{2}J_{2,1} = 12; {}^{3}J_{2(1), 3} = 6$
1 1 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3	m	1.95	0 2,1 12, 0 2(1), 3 °
14	4	b s	3.89	
3 C1 C1 3 H				
н Ги	1,2	m	3.94-4.03	
H C C	3	m	2.43	
15				

^{*}Lit. value [7]: -64.15 ppm.

cis-1,2-Bis(oxymethyl)-3,3-dichlorocyclopropane (14)

A mixture consisting of 13 (55 g, 279 mmol) and 50 cm³ of 1% HCl was heated at 80 °C (3 h) while the acetaldehyde formed in the reaction was distilled off. Excess water was evaporated off and the residue distilled in vacuo (b.p. 121 °C/0.3 mmHg) or crystallized from benzene. Yield, 45.5 g (95%).

Attempted distillation of cis-1,2-bis(oxymethyl)-3,3-dichlorocyclopropane (14) at 160–165 °C/20 mmHg re-

sulted in the formation of 6,6-dichloro-3-oxabicy-clo[3.1.0]hexane (15) [6]. Yield, 55%.

3. Results and discussion

The formation of olefins may proceed via the carbocations A or B, as shown in Scheme 2. The opening of the cyclopropane ring more probably proceeds after formation of the difluorocarbocation B, but not at the

^bIR (cm⁻¹): 1630 (C=CCl₂); 1758 (C=CF₂).

^cLit. value [7]: -64.95 ppm.

earlier stage of formation of a mesomeric trifluorosulfuroxyfluorocarbocation A, which is less electrophilic than the difluorocarbocation B [8].

This conclusion has been confirmed indirectly from an experiment where carbocation D which is more electrophilic than difluorocarbocation B was generated (Scheme 3).

Opening of the cyclopropane ring in difluorocarbocation B proceeds at the most substituted bond, as shown in other reactions of cyclopropanes [9]. Subsequent transformation of the intermediate olefins C into final olefins proceeds (in the case R=H) with proton elimination or by neutralization with HF_2^- to give 4 or 3. When R=COF, neutralization of the intermediate olefin C with HF_2^- is followed by fluorination of the fluoroformyl group. The previous unknown gem-dichlorocyclopropanecarboxylic acids 5 and 8 were prepared as shown in Scheme 5.

References

- [1] W. Dmowski and R.A. Kolinski, Pol. J. Chem., 52 (1978) 547.
- [2] Yu.M. Pustovit, P.I. Ogojko, V.P. Nazaretian and L.B. Faryat'eva, J. Fluorine Chem., 69 (1994) 225.
- [3] A. Kh. Khusid, G.V. Kryshtal, V.F. Kucherov and L.A. Yanovskaya, Synthesis, (1977) 428.
- [4] R.C. Woodworth and P.S. Skell, J. Am. Chem. Soc., 79 (1957) 2542.
- [5] F. Guibe, Yang Ting Xian and G. Balavoine, J. Organomet. Chem., 306 (1986) 267.
- [6] J.C. Anderson and C.B. Reese, Chem. Ind. (London), (1963) 575.
- [7] R. Fields, R.N. Haszeldine and D. Peter, J. Chem. Soc., (1969) 165.
- [8] Yu.M. Pustovit and V.P. Nazaretian, J. Fluorine Chem., 55 (1991) 29.
- [9] L.A. Yanovskaya, V.A. Dombrovskij and A. Kh. Khusid, *Cyklopropany s funkcyonalnymi gruppami*, Nauka, Moscow, 1980, pp. 107, 151.