A Convenient Synthesis of Homobenzoquinones¹ Waldemar ADAM*.2a, Metin BALCI, Juana RIVERA 2b Department of Chemistry, University of Puerto Rico, Río Piedras, Puerto Rico 00931, U.S.A. The classical methods for the preparation of p-homobenzoquinones 4 either via addition of diazoalkanes to p-benzoquinone and thermolysis of the resulting adducts³ or addition of carbenes to p-benzo-quinone⁴ is limited to substituted derivatives. For this reason Chapleo and Dreiding⁵ devised an involved indirect (3 stage) synthesis for the parent p-homobenzo-quinone 4a (X = H). Since singlet oxygenation⁶ of cycloheptatrienes 1 affords norcaradiene derived (2+4)-endo-peroxides 2 and since endo-peroxides are readily isomerized⁷ into 4-hydroxy-2-enones 3 on base treatment, it appeared to us that the latter should lead to the desired p-homobenzoquinones 4 on manganese dioxide oxidation⁸. Indeed, herein we demonstrate that the above synthetic strategy is a convenient method for the preparation of 4. Moreover, this synthetic sequence permits stereospecific functionalization of the cyclopropane ring in the p-homobenzoquinone. Table. p-Homobenzoquinones 4 | Product | | Yield
[%]ª | m.p.
(solvent) | Molecular
formula ^b | I.R. (CHCl ₃) ν [cm ⁻¹] | | | ¹ H-N.M.R. (CDCl ₃ /TMS) | |---------------------|--------------------|---------------|-------------------------|--|---|---------------------------|-------|---| | No. | | | | | CO | $\mathbf{C} - \mathbf{C}$ | X | δ [ppm] | | 4 a | Н | 92 | 48°e | C ₇ H ₆ O ₂ | 1685; | 1610 | | 1.6-1.9 (m, 2H, H-7); 2.4-2.7 (m, 2H, | | | | | (subl. 40°/1 torr) | (122.1) | 1680 | | | H-5, H-6); 6.4 (s, 2H, H-2, H-3) | | exo-4b | COOCH ₃ | 78 | 94° | $C_9H_8O_4$ | 1695; | 1605 | 1730 | 1.5-1.9 (A ₂ B, 3H, H-5, H-6, H-7); 3.1 | | | | | (chloroform/ethanol) | (180.2) | 1685 | | | (s, 3H, CH ₃); 6.25 (s, 2H, H-2, H-3) | | exo- 4c | CN | 71 | 144-145° | $C_8H_5NO_2$ | 1685° | 1600° | 2240° | 2.35 (t, 1H, $J_{\text{H-6,H-7}} = J_{\text{H-5,H-7}} = 4.33$ | | | | | (chloroform) | (147.1) | | | | Hz, H-7); 2.85 (d, 2H, H-5, H-6); | | | | | | | | | | 6.22 (s, 2H, H-2, H-3) | | endo- 4c | CN | 78 | 156-157° | $C_8H_5NO_2$ | 1685; | 1600 | 2240 | 2.4-3.0 (A ₂ B, 3H, H-5, H-6, H-7); 6.7 | | | | | (dichloromethane) | (147.1) | 1675 | | | (s, 2H, H-2, H-3) | | exo-4d ^d | CHO | 23 | 137° | $C_8H_6O_3$ | 1695 | 1605 | 1730 | 2.95 (s, 3H, H-5, H-6, H-7); 6.5 (s, | | | | | (dichloromethane/ether) | (150.1) | | | | 2H, H-2, H-3); 9.4 (b s, 1H, H-8) | | exo- 4e 9 | CH ₃ | 81 | 48-49° | $C_8H_8O_2$ | 1680 | 1600 | | 1.3 (d, 3H, CH ₃); 1.7-2.4 (m, 3H, H- | | | | | (ether/pentane) | (136.1) | | | | 5, H-6, H-7); 6.4 (s, 2H, H-2, H-3) | ^a Overall yield after column chromatography. ^b All products gave satisfactory microanalyses (C ±0.30%, H ±0.20%) and were performed by Atlantic Analytical Labs., Atlanta, Georgia. c KBr pellet. d Aldehyde is partly oxidized to carboxylic acid. e Ref.⁵ m.p. 47-49.5° (pale yellow needles). ## p-Homobenzoquinones 4; General Procedure: To a solution of the endoperoxide 2 (0.5 mmol), prepared by photosensitized oxygenation of the cycloheptatriene as described previously⁶, in dichloromethane (10 ml) is added while stirring and cooling at 0° a solution of triethylamine (0.5 mmol) in dichloromethane (5 ml). The reaction mixture is allowed to stir for 3-4 h at room temperature, the solvent is roto-evaporated ($\sim 30^{\circ}/25$ torr) and the triethylamine removed by passing the residue through a small silica gel column (2 g), eluting with 95:5 chloroform/methanol. The crude 4-hydroxy-2-enone 3 is oxidized without purification by dissolving it in dichloromethane (5 ml) and stirring with freshly precipitated manganese dioxide (500 mg) at room temperature for 4-5 h. The manganese dioxide is removed by filtration, the solvent roto-evaporated ($\sim 30^{\circ}/25$ torr) and the residue chromatographed on silica gel (~2 g), eluting with chloroform. Final purification of the p-homobenzoquinone 4 is achieved by recrystallization. The results are summarized in the Table. This work was supported by the National Science Foundation (78-12621) and the National Institutes of Health (GM-00141-04 and RR-8102-07). Received: June 26, 1979 0039-7881/79/1032-0808 \$ 03.00 © 1979 Georg Thieme Publishers ¹ Paper No. 98 in the Cyclic Peroxide Series. ² (a) NIH Career Development Awardee (1975-80). ⁽b) Undergraduate Research Participant in the Support for University Biomedical Education (SUBE) program sponsored by MBS-NIH. ³ (a) B. Eistert, H. Fink, J. Riedinger, H. G. Hahn, H. Dürr, *Chem. Ber.* 102, 3111 (1969). ⁽b) W. Rundel, P. Kästner, Justus Liebigs Ann. Chem. 737, 87 (1970). ⁴ C. B. Chapleo, C. E. Dahl, A. S. Dreiding, R. Grieb, A. Niggli, *Helv. Chim. Acta* 57, 1876 (1974). ⁵ C. B. Chapleo, A. S. Dreiding, *Helv. Chim. Acta* 57, 1259 (1974). ⁶ (a) W. Adam, M. Balci, Angew. Chem. 90, 1014 (1978); Angew. Chem. Int. Ed. Engl. 17, 954 (1978). ⁽b) W. Adam, M. Balci, J. Org. Chem. 44, 1189 (1979). ⁽c) W. Adam, M. Balci, B. Pietrzak, J. Am. Chem. Soc. in press. ⁽d) A. Ritter, P. Bayer, J. Leitich, G. Schomburg, Justus Liebigs Ann. Chem. 1974, 835. ⁷ N. Kornblum, H. E. De La Mare, J. Am. Chem. Soc. 73, 880 (1951). ⁸ (a) R. M. Evans, Quart. Rev. 13, 61 (1959). ⁽b) A. J. Fatiadi, Synthesis 1976, 65, 133. G. A. Russell, J. R. Dodd, T. Ku, C. Tanger, C. S. C. Chung, J. Am. Chem. Soc. 96, 7255 (1974).