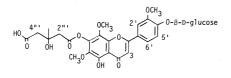
### Note


# Structure and Hypotensive Effect of Flavonoid Glycosides in Sudachi Peelings II<sup>†</sup>

## Hiroyasu KUMAMOTO, Yoshiharu MATSUBARA, Yoshitomi IIZUKA,\* Kozo OKAMOTO\*\* and Katsumi Yokoi\*\*\*

Department of Applied Chemistry, Faculty of Science and Engineering, and \* Research Institute of Food Science, Kinki University, Kowakae, Higashiosaka 577, Japan \*\* Kinki University School of Medicine, Sayamacho, Minamikawachi 588, Japan \*\*\* Japan Sangaria Beverage Co., Ltd., Nakano, Higashisumiyoshi-ku, Osaka 546, Japan

Previously, we have reported the separation purification, structural determination and hypotensive effect of six flavonoid glycosides from green peel of *Citrus sudachi*.<sup>1</sup> In this paper, we report the isolation structural determination and hypotensive effect of a new flavone glycoside, 4'- $\beta$ -D-glucosyl-sudachitin 7-0-(3-hydroxy-3methylglutalate) (1).

The molecular weight of 1 was decided as 666 by FAB-MS by showing m/z 667  $[M + H]^+$  and m/z 689  $[M + Na]^+$ . In the UV spectrum of 1, the band II (284 nm) in EtOH did not undergo a large shift with the addition of sodium acetate. However, the band I (337 nm) indicated a bathochromic shift of 63 nm with the addition of aluminum chloride. These facts show that no hydroxyl groups existed at the C7 position and that a hydroxyl group was located at the C<sub>5</sub> position.<sup>2) 1</sup>H-NMR data showed three aromatic protons of the C2', C5' and C6' positions, three methoxyl groups, an anomeric proton of  $\beta$ -glucose, and methyl and methylene protons of 3-hydroxy-3-methylglutalate. Characteristic data of the <sup>13</sup>C-NMR spectrum for 1 showed eighteen carbons of trimethylflavone, six carbons of glucose and six carbons of 3-hydroxy-3-methylglutaric acid monoester. After the alkaline hydrolysis of 1, sudachiin A<sup>1,3)</sup> was also identified on the basis of spectral evidence. On the other hand, the acidic hydrolysis of 1 gave sudachitin<sup>4)</sup> and D-glucose ( $[\alpha]_{\rm D}$  +47.8°C,  $c = 0.1, H_2O$ ). Therefore, compound 1 was a new flavonoid having 3-hydroxy-3-methylglutalate and was determined



as  $4'-\beta$ -D-glucosylsudachitin 7-O-(3-hydroxy-3-methylglutalate). The depressive effect on blood pressure was examined for 1, and the result is shown as the average value of three results. The blood pressure of SHR-SP decreased by 13 mmHg (1 mg/100 g of body weight) at 30 min after the intravenous administration.

Compound 1 isolated by the present study is a new flavone glycoside.

### **EXPERIMENTAL**

Analytical instruments. Optical rotation was measured with a Japan Spectroscopic DIP-140. FAB-MS spectra were obtained with JEOL JMS-HX 100 and JMA-DA 5000 instruments under xenon bombardment (6.0 keV). UV spectra were taken with a Hitachi 323 visibleultraviolet autoanalyzer. NMR spectra were measured with a JEOL JNM-FX 200 in DMSO- $d_6$  with TMS as an internal standard (200 MHz for <sup>1</sup>H and 50 MHz for <sup>13</sup>C).

Separation and purification. Crude flavonoids were obtained from sudachi peelings by the conventional method.<sup>1)</sup> Compound **1** was isolated by repeated chromatography on silica gel, following by gel filtration.

Alkaline hydrolysis of 1. A mixture of 10 mg of 1 and 10 ml of 0.5 N KOH-EtOH was refluxed for 1 hr, and then neutralized with a 0.5 N HCl aqueous solution. After the mixture had been dried, sudachiin A was isolated by gel filtration.

Acidic hydrolysis of 1. A mixture of 10 mg of 1 and 2 mg of 0.5N HCL was heated at 90°C for 1 hr, and CHCl<sub>3</sub> was then added to the mixture. The CHCl<sub>3</sub> layer and aqueous layer were separated with a separating funnel. The CHCl<sub>3</sub> solution was rinsed with a little water and then evaporated *in vacuo* to give the aglycone of sudachitin. The aqueous solution was evaporated *in vacuo* to give a glucose.

4'-β-D-glucosylsudachitin 7-O-(3-hydroxy-3-methylglutalate) (1). Yellow needles (mp 150~152°C); FAB-MS m/z 667  $[M+H]^+$ , 689  $[M+Na]^+$ ; UV  $\lambda_{max}^{EtOH}$  nm: 284, 337;  $\lambda_{\max}^{AcONa-EtOH.}$  283, 318, 400 s;  $\lambda_{\max}^{AiCl_3-EtOH.}$ 295 s, 305, 364 s, 400 s; <sup>1</sup>H-NMR  $\delta_{ppm}^{DMSO-d_6}$ : 1.28 (3H, s, Me), 2.51 (2H, s,  $H_{4'''}$ ), 2.56 (1H, d, J = 14 Hz,  $H_{2'''}$ ), 2.64 (1H, d, J = 14 Hz,  $H_{2''}$ ), 3.78 (3H, s, OMe), 3.88 (6H, s, OMe  $\times$  2), 5.08 (1H, d, J = 7 Hz,  $H_{1''}$ ), 6.86  $(1H, s, H_3)$ , 7.22  $(1H, d, J=8 Hz, H_{5'})$ , 7.54  $(1H, d, H_{5'})$  $J = 2 \text{ Hz}, \text{ H}_{2'}$ ), 7.56 (1H, dd,  $J = 2,8 \text{ Hz}, \text{ H}_{6'}$ ); <sup>13</sup>C-NMR  $\delta_{ppm}^{DMSO-4_6}$ : 27.6 (q, C<sub>6</sub>...), 45.6, 45.6 (each t, C<sub>2</sub>... and/or C<sub>4</sub>...), 56.1 (q, OMe), 60.3 (q, OMe), 61.3 (q, OMe), 63.5 (t, C6"), 70.0 (d, C4"), 73.2 (d, C2"), 74.1 (d, C3"), 76.7 (d,  $C_{5''}$ ), 99.7 (d,  $C_{1''}$ ), 103.2 (s,  $C_{10}$ ), 103.8 (d,  $C_{3}$ ), 110.3 (d, C2'), 115.6 (d, C5), 119.7 (d, C6'), 124.6 (s, C1'), 128.1 (s, C<sub>8</sub>), 131.7 (s, C<sub>6</sub>), 145.5 (s, C<sub>4'</sub>), 148.4 (s, C<sub>3'</sub>), 149.4, 149.7

Studies on Physiologically Active Substances in Citrus Peel. Part VIII.

(each s,  $C_9$  and/or  $C_7$ ), 151.0 (s,  $C_5$ ), 163.0 (s,  $C_2$ ), 170.5, 172.5 (each s,  $C_1$ ... and/or  $C_5$ ...), 182.4 (s,  $C_4$ ).

Sudachiin A. Yellow needles (mp  $211 \sim 213^{\circ}$ C; lit.<sup>3)</sup> 211 ~ 213°C); UV  $\lambda_{max}^{EOH}$ nm: 283, 335;  $\lambda_{max}^{AcONa-EtOH}$ : 285, 311 s, 376;  $\lambda_{max}^{AlCl_3-EtOH}$ : 260, 294, 363; <sup>1</sup>H-NMR  $\delta_{ppm}^{DMSO-ds}$ : 3.60 (3H, s, OMe), 3.68 (3H, s, OMe), 3.83 (3H, s, OMe), 4.94 (1H, d, J = 7 Hz,  $H_{1''}$ ), 6.37 (1H, s,  $H_3$ ), 7.14 (1H, d, J = 8 Hz,  $H_{5'}$ ), 7.40 (2H, m,  $H_{2'}$ ,  $H_{6'}$ ).

Sudachitin. Yellow needles (mp  $239 \sim 240^{\circ}$ C; lit.<sup>4)</sup> 239.5 ~ 240.5 °C); <sup>1</sup>H-NMR  $\delta_{ppm}^{DMSO-d_6}$ : 3.76 · (3H, s, OMe), 3.86 (6H, s, OME × 2), 6.79 (1H, s, H<sub>3</sub>), 6.90 (1H, d, J = 8 Hz, H<sub>5</sub>·), 7.48 (2H, m, H<sub>2</sub>·, H<sub>6</sub>·).

#### REFERENCES

- Y. Matsubara, H. Kumamoto, H. Yonemoto, Y. Iizuka, K. Okamoto and K. Yokoi, *Nippon Nôgeikagaku Kaishi*, **59**, 415 (1985).
- T. J. Mabry, K. R. Markham and M. B. Thomas, "Systematic Identification of Flavonoids," Springer-Verlag, Berlin, 1970, p. 41.
- 3) T. Horie, M. Nakayama, S. Hayashi, M. Tsukayama and M. Masumura, *Heterocycles*, **10**, 53 (1978).
- T. Horie, M. Masumura and S. Okuno, Nippon Kagaku Kaishi, 83, 465 (1962).