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Abstract: We describe a convergent synthesis of AGCN4229_ag-terpyridyl l, which contains a terpyridyl ligand 

attached covalently through a disulfide bond to the proposed DNA binding domain of the yeast transcriptional 

activator protein GCN4. 

One of the many powerful applications of solid-phase peptide synthesis1 is the construction of peptides 

containing functional groups not normally found in nature. Historically, the nonnatural functionality is 

introduced into the growing resin-bound peptide chain in the form of a suitably protected amino acid derivative 

or acylating agent2 Before experimentation can begin, the peptide must be cleaved from the resin, deprotected, 

purified by HPLC, and characterized by amino acid analysis and mass spectroscopy. If the experiments indicate 

that modifications to the original design are necessary, one must begin anew synthesizing another peptide. This 

involves non-trivial expenditures of resources as well as the production of considerable waste since peptides are 

normally synthesized in amounts which far exceed those required for biological experiments. Moreover, it 

requires that the nonnatural functionality be robust enough to withstand rigorous side chain deprotection and 

resin cleavage steps. 

1 

ngllle 1 

A more pragmatic strategy would involve synthesis of a single peptide bearing a unique and unambiguous 

locus of reactivity. Once synthesized, purified, and characterized, the peptide could be reacted with one or more 

reagents capable of covalently linking new functionality to the unique site of reactivity. If subsequent 

experimentation indicates that modifications to the original design are necessary, one need only synthesize a 
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different reagent, not an entire peptide. An attractive choice for a unique locus of reactivity on a peptide is the 

thiol group of a cysteine residue. Conversion of a free thiol into a mixed disulfide is a straightforward 

procedure resulting in a covalent bond which is exceedingly stable in the absence of excess thiol.4 Thus, 

reaction of a peptide thiol with the appropriate activated disulfide in a disultide interchange reaction would permit 

the peptide to be modified by a multitude of functional groups. 5 In this letter we describe the use of this strategy 

to synthesize AGCN4-terpyridyl conjugate 1. 

GCN& is a transcriptional activator protein responsible for regulating amino acid biosynthesis in yeast.7 

As a member of the “leucine zipper ~‘8 class of DNA binding proteins, it binds DNA as a dimer.9 Each 

monomeric protein contains two domains responsible for DNA recognition: a basic domain consisting of - 25 

amino acids which contacts the DNA directly, 10 and a domain containing 30 amino acids responsible for 

assembling two independently translating protein molecules into a parallel coiled coil, facilitating DNA 

binding.11 The peptide ALKRARNTEAARRSRARKLQC-NH2 (AGCN4229_248) was chosen to constitute a 

minimal DNA-binding domain of GCN4. 11 It consists of GCN4 residues 229 through 248 with an additional 

cysteine at the carboxyl terminal to permit formation of a mixed disulfide. AGCN4229-248 was synthesized 

using an Applied Biosystems 430-A Synthesizer and fert-butyloxycarbonyl protected amino acid derivatives, 

purified by HPLC12 and characterized by amino acid analysis*3 and FAB-mass specuoscopy.14 

MgBr-OJBu 

E&Cl, PhH 
* 

0-‘Bu 

a 3. NH40Ac, AdlH 

40% 

AcSH, DEAD 

The synthesis of a terpyridyl ligand which can be linked to AGCN4229..248 through a disulfide bond is 

illustrated in Figure 2. Following the general procedure of Potts, 15 the potassium enolate of acetyl pyridine was 

reacted with one equivalent of carbon disulfide followed by two equivalents of methyl iodide to generate the rx- 

oxoketenethioacetal. This species was not isolated, but was reacted with an additional equivalent of acetyl 

pyridine potassium enolate and then cyclized with ammonium acetate in acetic acid to provide 4’-methylthio- 

2,2’:6,2”-terpyridyl2.16 Treatment of this compound with the Grignard reagent derived from the tert-butyl 

ether of 3-bromopropano117 . m the presence of Ni(II)Cl2(PPh3)2 produced none of the desired rert-butyl ether 

3. However, the more exchange-inert catalyst Ni(IBCl2dppp (dppp=l,3-bis(diphenylphosphino)propane)l8 

provided 3 in a 41% yield.l9 The rert-butyl ether was removed by use of trifluoroacetic acid (81%) and the 

alcohol 420 was converted into the thiolacetate S21 using the procedure of Volante (10070).~~ The thiolacetate 

was hydrolyzed, and reacted in situ with 2-thiopyridonedisulfide to provide the mixed disulfide 6.23 
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AGCN4229_248 reacted readily with activated disulfide 6 to generate AGCN4229_24g-terpyridyl 1. 

AGCN4229_248 (1 n&I) was incubated with terpyridy16 (5 mM) in a degassed 40% aqueous acetonitrile 

solution (10 mM phosphate, pH 7.5) at 37 oC, and the extent of reaction was monitored by reverse phase 

HPLC.24 Monomeric AGCN4229_248 elutes with a retention time of 12.2 minutes under these conditions, 

while the AGCN4229_248 disulfide dimer (generated in small amounts) elutes at 15.5 minutes. Over a period 

of three hours, we observe the appearance of a new peak at 21.4 minutes. This peak was isolated and shown to 

be the desired product 1 by UV/VIS spectroscopy,25 amino acid analysis,26 FAB-MS27 and by the 

quantitative conversion into AGCN4229_248 upon treatment with excess dithiothreitol.28 Future studies will 

focus on the ability of 1 to self-assemble into a sequence-specific DNA binding complex. 
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