TRITERPENOID SAPOGENOLS FROM ANDROSACE SAXIFRAGIFOLIA: THE STRUCTURE OF ANDROSACENOL

BIKAS C PAL, GITA ROY and SHASHI B MAHATO*

Indian Institute of Chemical Biology, Jadavpur, Calcutta-700032, India

(Revised received 13 December 1983)

Key Word Index—Androsace saxifragifolia, Primulaceae, androsacenol, cyclamiretin A, cyclamiretin D

Abstract—Acid hydrolysis of the saponin mixture isolated from the aerial part of Androsace saxifragifolia afforded a mixture of triterpenoid sapogenols which on chromatographic separation yielded a new triterpenoid designated androsacenol together with cyclamiretin A and cyclamiretin D The structure of androsacenol was established as 3β ,16 α -dihydroxyolean-13,28-epoxy-22 β -acetoxy-30-al

INTRODUCTION

Androsace saxifragifolia (Syn Androsace rotundifolia) is a small herb occurring wild in many parts of India Surina et al reported [1] that the extract of Androsace septentrionalis retarded maturation of the sexual organs in female rats without causing any degeneration of the organs This observation, in conjunction with the reputation of A saxifragifolia as an abortifacient agent, prompted us to take up detailed chemical investigation of the plant Recently primulagenin A, a known triterpenoid sapogenol, was isolated from this plant [2] This paper is concerned with the isolation and characterization of a new triterpenoid sapogenol, androsacenol (1), along with cyclamiretin A (2) and cyclamiretin D (3)

RESULTS AND DISCUSSION

The ethanol extract of the plant on chromatographic purification over silica gel afforded a mixture of triterpenoid saponins which on acid hydrolysis [3] yielded a mixture of three triterpenoid sapogenols which were separated by silica gel CC into the new triterpenoid, androsacenol (1) and compounds 2 and 3 Compound 2, $C_{30}H_{48}O_4$ (M⁺ at m/z 472), mp 200–202°, was found to be identical with cyclamiretin A [4] by comparison with an authentic sample

Compound 3, $C_{30}H_{48}O_4$ (M⁺ at m/z 472), mp 245–247°, was obtained as a major product It was eventually characterized as cyclamiretin D [4] by comparison of its IR, ¹H NMR and mass spectrum with those of an authentic sample Its ¹³C NMR spectrum was determined and ¹³C signals were assigned (Table 1) from their chemical shifts [5–7], off-resonance studies and comparison of the shift data with those of compounds having a similar carbon skeleton Treatment of 3 in chloroform solution with conc H₂SO₄ yielded compound 4

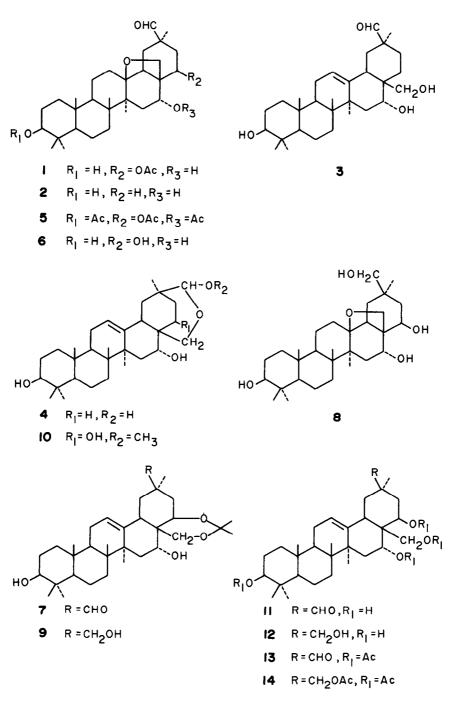
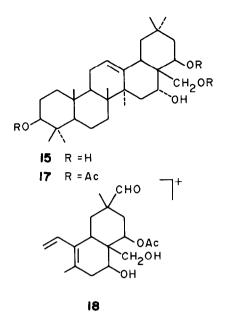
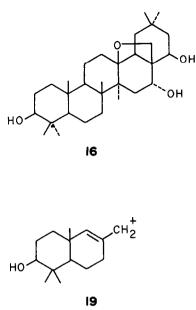

Compound 1, $C_{32}H_{50}O_6$ (M⁺ at m/z 530), mp

Table 1 ¹³C NMR chemical shifts $\delta_{\rm C}$ (±01) of compounds 1 and 3

Carbon no	1	3
1	38 0 t	389t
2	28 3 t	27 5 t
3	78 2 d	77 8 d
4	39 6 s	38 9ª s
5	55 8 d	55 4 d
6	18 3° t	18 3 t
7	32 7 t	32 8 t
8	42 9 ^f s	39 6ª s
9	47 6 d	47 0 d
10	37 3 s	36 8 s
11	19 2° t	23 4 t
12	31 8 ^b t	122 5 d
13	86 1 s	144 O s
14	44 6 ^f s	41 4 s
15	34 4 t	34 3 t
16	73 2ª d	73 3 d
17	46 5° s	40 0 s
18	50 6 d	43 2 d
19	36 8 t	30 2 t
20	47 6° s	467 s
21	30 1 ^b t	29 5 t
22	74 1 ^d t	27 5 t
23	28 8 q	28 3 q
24	166 q	154 g
25	164 g	16 1 ⁶ a
26	18 7ª q	16 6 ^b a
27	20 1ª q	27 2 g
28	70 3 t	697 t
29	24 2 q	23 8 q
30	205 3 d	207 6 d
22-OAc	169 8 s	
	209 <i>q</i>	


a, b, c, d, e and f may be reversed on each vertical column


^{*}To whom correspondence should be addressed

262–265°, was obtained in lower yield in comparison to 3 The IR spectrum showed absorption bands at 3400 (br), 2675 and 1720, 1730 and 1240 cm⁻¹ assigned to hydroxyl, aldehyde and acetate functions respectively Moreover, the sharp bands between 1120 and 880 cm⁻¹ indicated the presence of an ether linkage On acetylation compound 1 yielded 5 containing three acetoxy groups

The ¹H NMR spectrum of 1 showed, besides five singlets assignable to six tertiary methyls, a three-proton singlet at $\delta 2.04$ assigned to an acetoxy methyl group but did not show any signal attributable to any olefinic proton The mass spectrum of 1 displayed RDA- fragmentation typical of a Δ^{12} -oleanene or ursene [8] Consequently, it could be inferred that 1 might contain an oxide ring involving C-28 and C-13 as in 2 which readily opens up to yield the Δ^{12} -derivative with subsequent generation of the RDA-fragments 18 and 19 appearing at m/z 322 and 207, respectively Furthermore, formation of these fragments suggested that the aldehyde group, a hydroxyl group and the acetoxy group are present in rings D/E whereas one hydroxyl group is present in rings A/B The presence of the latter hydroxyl group at C-3 was assumed from biogenetic considerations The orientation of the C-3 hydroxyl group was indicated to be equatorial

(β) from the ¹HNMR characteristics of its geminal proton The C-27 methyl of 1 resonated at $\delta 1$ 32, 1e downfield from its usual position [9], indicating the presence of a C-16a hydroxyl group which was further supported by the ¹³C NMR spectrum (Table 1) considering a hydroxyl substituent effect on C-16 [10] The ¹H NMR spectrum of 1 displayed a signal at δ 5 2 (1H, t, J = 4 Hz) assigned to the proton geminal to the acetoxy group and the lower coupling constant indicated an axial configuration of the acetoxy group and it could be placed either at C-21 or C-22 Hydrolysis of 1 afforded a triol (6) which formed an acetonide (7) The ¹H NMR spectrum of 7, besides showing the absorption of the gem dimethyl of the acetonide moiety, exhibited the olefinic proton signal (1H, t-like) at $\delta 5.52$ Lithium aluminium hydride reduction of 1 yielded a tetrol (8) which formed an acetonide (9) with dry acetone-conc H_2SO_4 The C-16 α hydroxyl group does not normally form an acetonide with the C-28 hydroxyl group and Dreiding model inspection revealed that acetonide formation between the C-28 and C-21 α (axial) hydroxyl groups is unlikely However, acetonide formation between the C-22 β (axial) and C-28 hydroxyl groups is quite feasible. The results clearly demonstrated the presence of the C-22 β acetoxy function in 1 Mild acid treatment of 7 and 9 yielded 11 and 12, respectively On acetylation with acetic anhydride and pyridine at 100° compounds 11 and 12 yielded 13 and 14, respectively

The presence of a methyl signal at o132 indicated that the formyl group might be attached to C-20 Furthermore, when the solution of 1 in methanol was treated with a drop of conc H₂SO₄ it was converted to the acetal (10) whose ¹H NMR spectrum did not show the formyl proton signal but showed the signals at $\delta 344$ (3H, s), 468 (1H, s), 340 and 362 (2H, ABq, J = 8 Hz) assignable to OMe, -O-CH-O and \geq C-CH₂-O- systems, respectively Acetal formation demonstrated the presence of the C-30 β aldehyde Finally the structure and stereochemistry of 1 were ascertained by its chemical correlation with the 22epimer of dihydropriverogenin A (15) Huang-Minlon reduction of 6 afforded 16 which on treatment in methanol solution with a drop of conc H_2SO_4 yielded 15 Acetylation of 15 yielded 17 identical with an authentic sample of the triacetate of the 22-epimer of dihydropriverogenin A [11]

Thus the structure of androsacenol was established as 3β ,16 α -dihydroxy-olean-13,28-epoxy-22 β -acetoxy-30al (1)

EXPERIMENTAL

The plant material was collected from Muzaffarpur area, North Bihar and was identified by Mr U Bhattacharya, Indian Botanic Garden, Howrah A voucher specimen has been deposited at the herbarium of IICB Mps are uncorr ¹H NMR spectra were recorded at 100 MHz in CDCl₃ soln with TMS as internal standard The ¹³C NMR spectrum was recorded in C₅D₅N at 2515 MHz in the Fourier transform mode Mass spectra were determined at 70 eV using a direct inlet system and IR spectra were taken in Nujol HPLC was done in a Spectra-Physics model 8000B instrument

Isolation of the triterpenoid saponins Finely ground aerial parts of A saxifragifolia (1 kg) were defatted with petrol and extracted successively with CHCl₃ and EtOH The EtOH extract (20 g) was chromatographed over silica gel and elution with CHCl₃-MeOH (4 3) afforded a mixture of saponins (2 5 g) The saponin mixture was hydrolysed with 2 N HCl for 6 hr at 100° The mixture of aglycones (0 8 g) was chromatographed on silica gel to give 1 and compounds 2 and 3

Cyclamuretin A (2) Compound 2 was crystallized from EtOAc as needles, mp 200-202°, $IR v_{max}^{Nujol} cm^{-1}$ 3450, 2670, 1720, ¹H NMR (CDCl₃) $\delta 0$ 76 (3H, s), 0 88 (3H, s), 1 00 (3H, s), 1 02 (3H, s), 1 12 (3H, s), 1 24 (3H, s), 3 06 (1H, d, J = 8 Hz, H-28), 3 20 (1H, t, J = 8 Hz, H-3), 3 48 (1H, d, J = 8 Hz, H-28), 4 06 (1H, m, H-16), 9 44 (1H, s, H-30)

Cyclamuretin D (3) Compound 3 was crystallized from EtOAc as needles, mp $245-247^{\circ}$ IR $v \frac{\text{Nupol}}{\text{max}} \text{ cm}^{-1}$ 3470, 2680, 1720, ¹H NMR (CDCl₃) $\delta 0$ 80 (3H, s), 0 92 (3H, s), 0 96 (3H, s), 1 02 (6H, s), 1 35 (3H, s), 3 16 (1H, d, J = 8 Hz, H-28), 3 24 (1H, m, H-3), 3.28 (1H, d, J = 8 Hz, H-28), 4 08 (1H, m, H-16), 5 36 (1H, m, H-12), 9 48 (1H, s, H-30) Compound 4 Compound 3 (40 mg) in dry CHCl₃ (3 ml) was treated with 0 1 ml conc H₂SO₄, worked up in the usual way and compound 4 (32 mg) obtained was crystallized from EtOAc as needles, mp 238–240°, IR v_{max}^{Nuol} cm⁻¹ 3450, 870, ¹H NMR (CDCl₃) δ 0 78 (3H, s), 0 90 (3H, s), 0 93 (3H, s), 0 95 (3H, s), 1 20 (3H, s), 1 22 (3H, s), 3 16 (1H, d, J = 8 Hz, H-28), 3 20 (1H, m, H-3), 3 26 (1H, d, J = 8 Hz, H-28), 4 12 (1H, m, H-16), 4 78 (1H, s, H-30), 5 36 (1H, m, H-12)

Androsacenol (1) Compound 1 was crystallized repeatedly from EtOAc to give plates, mp 262–264°, $[\alpha]_{D}^{25} + 23°$ (CHCl₃), IR ν_{max}^{hujol} cm⁻¹ 3400, 2675, 1730, 1720, 1240, 1050, 1030, 980, ¹H NMR (CDCl₃) $\delta 0$ 84 (3H, s), 0 95 (3H, s), 1 04 (6H, s), 1 20 (3H, s), 1 32 (3H, s), 2 04 (3H, s, 22 – OAc), 3 24 (1H, m, H-3), 3 32 (2H, s, H-28), 4 12 (1H, m, H-16), 5 2 (1H, t, J = 4 Hz, H-22), 9 44 (1H, s, H-30) MS m/z (rel int) 530 [M]⁺ (7), 512 [M – H₂O]⁺ (13), 501 [M – CHO]⁺ (10), 470 [M – AcOH]⁺ (18), 452 [M – H₂O – AcOH]⁺ (19), 442 (24), 421 (12), 322 [18] (12), 293 [18 – CHO]⁺ (7), 262 [18 – AcOH]⁺ (14), 232 (30), 220 (65), 214 (72), 207 [19] (100), 203 (60), 189 [19 – H₂O]⁺ (7) (Found C, 72 40; H, 9 48 C₃₂H₃₀O₆ requires C, 72 41, H, 9 50%)

The triacetate (5) Compound 1 (10 mg) furnished the triacetate (5) with Ac₂O (1 ml) and pyridine (1 ml) at 100° for 4 hr It was crystallized from EtOAc, mp 230–232°, IR v_{max}^{Nujol} cm⁻¹ 1730, 1720, 1240, 1040, 975 (Found C, 70 31, H, 890 C₃₆H₅₄O₈ requires C, 70 33, H, 885%)

Hydrolysis of androsacenol (1) *to triol* (6) Compound 1 (20 mg) was refluxed with 2% KOH in *t*-BuOH (5 ml) for 1 hr The product was poured into ice-water, worked up as usual and purified by silica gel CC eluting with petrol-EtOAc (7 3) The product was crystallized from EtOAc as needles (16 mg), mp 304-306°, IR $\nu_{\rm Miyol}^{\rm Nujol}$ cm⁻¹ 3500, 2675, 1715, 1030, 980, ¹H NMR (CDCl₃) $\delta 0$ 80 (3H, s), 0 88 (3H, s), 1 00 (3H, s), 1 12 (3H, s), 1 20 (3H, s), 1 24 (3H, s), 3 28 (1H, m, H-3), 3 35 (1H, d, J = 8 Hz, H-28), 398 (1H, d, J = 8 Hz, H-28), 4 02 (2H, m, H-16 and H-22), 9 40 (1H, s, H-30), MS m/z (rel int) 488 [M]⁺ (2), 470 [M - H₂O]⁺ (8), 452 [M - 2H₂O]⁺ (10), 279 (15), 251 (18), 232 (36), 220 (42), 214 (45), 207 (85), 189 (100), 185 (80) (Found C, 73 75, H, 9 85 C₃₀H₄₈O₅ requires C, 73 73, H, 9 90%)

Acetonide derivative (7) of triol (6) Triol 6 (10 mg) was stirred in dry Me₂CO (5 ml) and one drop of conc H₂SO₄ at room temp for 6 hr Work up as usual and crystallization of the product from EtOAc afforded colorless crystals of 7 (4 5 mg), mp 278–280°, $[\alpha]_D + 14^\circ$ (CHCl₃), IR $\nu_{max^0}^{muol}$ cm⁻¹ 3500, 2670, 1720, 1050, 850, ¹H NMR (CDCl₃) $\delta 0 \, 80$ (3H, s), 0 92 (3H, s), 0 96 (3H, s), 1 00 (3H, s) 1 28 (3H, s), 1 32 (3H, s), 1 36 (3H, s), 1 48 (3H, s), 3 24 (1H, m, H-3), 3 36 (1H, d, J = 8 Hz, H-28), 3 98 (1H, d, J = 8 Hz, H-28), 4 04 (2H, t, J = 4 Hz, H-16 and H-22), 5 64 (1H, t, J = 4 Hz, H-12), 9 44 (1H, s, H-30), MS m/z (rel int) 528 [M]⁺ (2), 513 [M - Me]⁺ (2), 470 [M - MeCOMe]⁺ (24), 452 (5), 424 (4), 265 (19), 262 (15), 234 (35), 218 (37), 207 (84), 185 (100) (Found C, 74 93, H, 9 89 C₃₃H₅₂O₅ requires C, 74 96, H, 9 91 %)

LiAlH₄ reduction of androsacenol (1) yielding tetrol (8) To a soln of 1 (8 mg) in dioxane (3 ml) was added LiAlH₄ (50 mg) and the mixture refluxed for 4 hr The reaction product was then treated with H₂O followed by crystallization from EtOAc to yield the tetrol (8) as flakes (6 mg), mp 298–299°, $[\alpha]_D + 13^\circ$ (CHCl₃), IR v^{Musi} cm⁻¹ 3450, 1040, 970, ¹H NMR (d_5 -pyridine) δ 092 (3H, s), 1 02 (3H, s), 1 20 (3H, s), 1 24 (3H, s), 1 36 (3H, s), 1 56 (3H, s), 3 48 (1H, t-like, H-3), 3 56 (1H, d, J = 8 Hz, H-28), 3 72 (1H, d, J = 8 Hz, H-28), 3 90 (1H, d, J = 10 Hz, H-30), 4 40 (2H, m, H-16 and H-22), MS m/z (rel int) 490 [M]⁺ (2), 472 [M - H₂O]⁺ (4), 454 [M - 2H₂O]⁺ (5), 441 (9), 423 (9), 417 (10), 405 (7), 282 (8), 233 (21), 207 (42), 203 (45), 189 (46), 159 (64), 105 (100) (Found C, 73 40, H, 10 31 C₃₀H₅₀O₅ requires C, 73 43, H, 10 27%)

Acetonide derivative (9) from tetrol (8) Tetrol 8 (10 mg) was

stirred with dry Me₂CO (5 ml) and one drop of conc H₂SO₄ at room temp for 5 hr The product after work up and crystallization from Me₂CO afforded acetonide (9, 6 mg), mp 260–262°, IR v_{max}^{hujol} cm⁻¹ 3470, 1040, 850, ¹H NMR (CDCl₃) $\delta 0$ 84 (3H, s), 0 92 (6H, s), 0 96 (3H, s), 1 04 (3H, s), 1 28 (3H, s), 1 44 (3H, s), 1 48 (3H, s), 3 24 (1H, m, H-3), 3 32 (1H, d, J = 8 Hz, H-28), 3 40 (1H, d, J = 8 Hz, H-30), 3 42 (1H, d, J = 8 Hz, H-30), 3 96 (1H, d, J = 8 Hz, H-28), 4 02 (2H, m, H-16, H-22), 5 52 (1H, t, J = 4 Hz, H-12) (Found C, 74 65, H, 10 25 C₃₃H₅₄O₅ requires C, 74 67, H, 10 26%)

Deacetonidation of 7 and 9 yielding 11 and 12 (a) A soln of 7 (8 mg) in Me₂CO (1 5 ml), dioxane (1 ml) and 20% HCl-MeOH (0 5 ml) was left for 15 min at room temp and poured into H₂O Work up as usual was followed by crystallization from EtOAc to yield needles of 11 (6 mg), mp 208–210° (Found C, 73 79, H, 9 83 $C_{30}H_{48}O_3$ requires C, 73 73, H, 9 90%) (b) The product 9 (10 mg) was treated in the above manner and the needles of 12 (8 mg) were obtained, mp 270–272° (Found C, 73 40, H, 10 25 $C_{30}H_{50}O_5$ requires C, 73 43, H, 10 27%)

Acetylation of 11 and 12 yielding 13 and 14 (a) Acetylation of 11 (5 mg) with pyridine (0 6 ml)-Ac₂O (1 ml) on a water bath for 3 hr and usual work up afforded colourless leaflets of 13 (4 mg), mp 185–187°, IR $v_{\text{max}}^{\text{Nujol}}$ cm⁻¹ 1730, 1240, 1230, ¹H NMR (CDCl₃) $\delta 0.82$ (3H, s), 0.86 (3H, s), 0.90 (3H, s), 0.96 (3H, s), 1.02 (3H, s), 1 28 (3H, s), 2 04-2 10 (12H, s, 4 × OAc), 4 0 (1H, d, J = 11 Hz, H-28), 4 25 (1H, d, J = 11 Hz, H-28), 4 50 (2H, m, H-3 and H-16), 5 20 (2H, t-like, H-12 and H-22), 9 48 (1H, s, H-30) (Found C, 69 42, H, 8 56 C₃₈H₅₆O₉ requires C, 69 48, H, 859%) (b) Acetylation of 12 (6 mg) as above afforded colourless needles of 14 (4 mg), mp 220-222°, IR v mar 1 1736, 1244, 1235, ¹H NMR (CDCl₃) δ 0 88 (6H, s), 0 92 (3H, s), 0 98 (3H, s), 1 28 (6H, s), 1 96-2 12 (15H, all s, 5 × OAc), 3 60 (1H, d, J = 8 Hz, H-30), 3 80 (1H, d, J = 8 Hz, H-30), 3 92 (1H, d, dJ = 11 Hz, H-28), 4 08 (1H, d, J = 11 Hz, H-28), 4 52 (2H, m, H-3 and H-16), 518 (1H, m, H-22), 536 (1H, m, H-12) (Found C, 68 52, H, 8 61 $C_{40}H_{60}O_{10}$ requires C, 68 54, H, 8 63 %)

Acetal derivative (10) from androsacenol (1) Compound 1 (10 mg) was stirred in MeOH with a drop of conc H₂SO₄ at room temp for 6 hr The reaction product after usual work up was purified by crystallization from EtOAc giving 10 (6 mg), mp 252°, IR $v_{\text{max}}^{\text{Nujol}}$ cm⁻¹ 3500, 1010, 850, ¹H NMR (CDCl₃) δ 0 84 (3H, s), 0 92 (3H, s), 0 96 (3H, s), 1 02 (3H, s), 1 04 (3H, s), 1 36 (3H, s), 3 44 (3H, s, 30-OMe), 4 68 (1H, s, H-30), 3 28 (1H, m, H-3), 3 40 (1H, d, J = 8 Hz, H-28), 3 62 (1H, d, J = 8 Hz, H-28), 4 00 (2H, m, H-16, H-22), 5 44 (1H, t, J = 4 Hz, H-12), MS m/z (rel int) 484 [M - H₂O]⁺ (5), 470 (3), 452 [M - H₂O - MeOH]⁺ (7), 440 (14), 424 (5), 412 (26), 358 (18), 262 (17), 232 (72), 207 (81), 189 (70), 186 (100) (Found C, 74 10, H, 9 98 C₃₁H₅₀O₅ requires C, 74 06, H, 10 03%)

Conversion of 6 to the triacetate (17) Triol 6 (10 mg) in EtOH (1 ml), triethylene glycol (5 ml) and 80 % hydrazine hydrate (1 ml) were refluxed for 3 hr KOH (250 mg) was added and the mixture refluxed further for 15 min The bath temp was then raised gradually with a downward condenser to remove low boiling components and finally heated at 230–240° for 4 hr and worked up as usual to yield the product 16 (8 mg) Compound 16 (7 mg) was stirred in MeOH with a drop of conc H_2SO_4 for 6 hr to afford 15 (6 mg) Acetylation of 15 (5 mg) with pyridine (0 5 ml) and Ac₂O (1 ml) at room temp overnight followed by usual work up and crystallization from MeOH yielded needles of 17 (4 mg), mp 239–241°

Acknowledgements—Our sincere thanks are due to Professor Osamu Tanaka, Faculty of Pharmaceutical Sciences, Hiroshima University, Japan for helpful suggestions and Shri R Mahato of this laboratory for technical assistance in the isolation of the compounds

REFERENCES

- Surina, L N, Agarkov, V A, Pushkar, V G and Plekhanova, L F (1971) Rast Resur 7, 410
- 2 Usmanghani, K, Najmus-Saqib, Q, Ahmad, I and Ahmad, V U (1978) Lloydia 41, 281
- 3 Tschesche, R, Inchaurrondo, F and Wulff, G (1964) Ann Chem 680, 107
- 4 Harvala, C and Hylands, P J (1978) Planta Med 33, 180
- 5 Levy, G C and Nelson, G L (1972) Carbon-13 Nuclear

Magnetic Resonance for Organic Chemists Wiley-Interscience, New York

- 6 Stothers, J B (1972) Carbon-13-NMR Spectroscopy Academic Press, New York
- 7 Wehrli, F W and Wirthlin, T (1978) Interpretation of Carbon-13 NMR Spectra Heyden, London
- 8 Budztkiewicz, H, Wilson, J M and Kjerassi, C (1963) J Am Chem Soc 85, 3688
- 9 Ito, S, Kodama, M, Sunagawa, M and Oba, T (1969) Tetrahedron Letters 2905
- 10 Tori, K., Yoshimura, Y., Seo, S., Sakurawi, K., Tomita, Y and Ishu, H (1976) Tetrahedron Letters 4163
- 11 Yosioka, I, Nishimura, T, Matsuda, A and Kitagawa, I (1971) Chem Pharm Bull 19, 1186