4α , 14α -DIMETHYL- 5α -ERGOSTA-7, 9(11), 24(28)-TRIEN- 3β -OL FROM PHASEOLUS VULGARIS AND GYNOSTEMMA PENTAPHYLLUM

TOSHIHIRO AKIHISA, W. C. M. C. KOKKE,* TAKAO YOKOTA,† TOSHITAKE TAMURA and TARO MATSUMOTO

College of Science and Technology, Nihon University, 1-8, Kanda Surugadai, Chiyoda-ku, Tokyo, 101 Japan; *Department of Synthetic Chemistry, Smith Kline and French Laboratories, King of Prussia, Pennsylvania 19406, U.S.A.; †Department of Agricultural Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo, 113 Japan

(Received 15 August 1989)

Key Word Index—Phaseolus vulgaris; Leguminosae; seeds; Gynostemma pentaphyllum; Cucurbitaceae; plant sterols; 4α -methylsterol; 4α , 14 α -dimethyl-5 α -ergosta-7,9(11),24(28)-trien-3 β -ol.

Abstract—The structure of a new 4α -methylsterol isolated from the immature seeds of *Phaseolus vulgaris* and the aerial parts of *Gynostemma pentaphyllum* has been shown to be 4α , 14α -dimethyl- 5α -ergosta-7,9(11), 24(28)-trien- 3β -ol by spectroscopic methods and by chemical correlation with obtusifoliol. This appears to be the first report of the isolation of a 4α -methylsterol with a $\Delta^{7,9(11)}$ -diene system from nature. Abundances and chromatographic data of all identified 4α -methylsterols isolated from *G. pentaphyllum* are also given.

INTRODUCTION

In the course of our study on the isolation and characterization of higher plant sterols, we found that several plants belonging to the Cucurbitaceae contain sterols with side-chains which, hitherto, were supposed to be typical of marine sponge sterols. Examples are sidechains with 24,24-dimethyl groups [1] and acetylenic sterols [2] which were obtained from *Gynostemma pentaphyllum*. The isolation of the acetylenic sterols completed our work on the 4-demethylsterols from this source.

We now report the results of an investigation of the 4α -methylsterols, intermediates in the biosynthesis of 4-demethylsterols [3, 4], from the aerial parts of G. pentaphyllum. One novel sterol, viz. 4α , 14α -dimethyl- 5α -ergosta-7,9(11),24(28)-trien-3 β -ol (1a) and five known 4α -methylsterols were identified. The same novel sterol was also isolated from the immature seeds of Phaseolus vulgaris. Compound 1a accounts for 1.9 and 1.8% of the 4α -methylsterol fraction of G. pentaphyllum and P. vulgaris, respectively. Other 4α -methylsterols from the immature seeds of Phaseolus have been reported recently [5]. A list of all identified 4α -methylsterols of G. pentaphyllum, their abundances and chromatographic data, is given in the Experimental.

RESULTS AND DISCUSSION

The acetyl derivative of a 4α -methylsterol **1a** was isolated from the 4α -methylsterol fraction of *P. vulgaris* seed extract as described in the Experimental. The mass spectrum of **1a**-acetate included peaks for $[M]^+$ at m/z $466 (C_{32}H_{50}O_2)$, and fragmentation ions at m/z 451 $[M - Me]^+$ and 391 $[M - Me - HOAc]^+$. This indicated that it was an acetate of a $C_{30} 4\alpha$ -methylsterol with three degrees of unsaturation. The base peak had at m/z 339 as a result of the loss of the side chain plus two hydrogens, a process typical of a sterol with one degree of unsaturation

Side chains (R)

in the side chain and two in the nucleus [6, 7] possessing one additional methyl group in the nucleus and one in the side chain. The diagnostic peak at m/z 382 (loss of end of the side chain by McLafferty rearrangement [6-8]) had a low intensity because of competing skeletal fragmentation. Its occurrence limited the possibilities for the position of the double bond in the side chain to $\Delta^{24(28)}$ or $\Delta^{24(25)}$. The presence of fragment ions at m/z 299 [M -side chain $-C_{3}H_{6}$ (ring D)]⁺ and 285 [299-CH₂] suggested that the additional methyl group in the nucleus was located at C-14 [9, 10]. The ¹HNMR spectrum showed two olefinic protons at δ 4.669 and 4.722 (CDCl₃) which were also present in the spectrum of obtusifoliol $[4\alpha, 14\alpha - \text{dimethyl} - 5\alpha - \text{ergosta} - 8, 24(28) - \text{dien} - 3\beta - \text{ol}, 2a]$ acetate (Table 1). This, together with the mass spectral evidence, proved the presence of the 24-methylene group.

Н	la t	1 23 ++	la (pyridine-d _s)‡	1b, c§ (1b) (1c)	1b, c∦ (1b) (1c)	<pre>1b. c (pyridine-d_s) (1b) (1c)</pre>	2a	2b, c (2b) (2c)
3α-H (dt)	4.397	4.397	4.598	4.396	4.396	4.593	4.379	4.383
3β -OAc (s)	(5.0, 11.0) 2.059	(c.9, 9.2) 2.057	(4. /, 11.3) 2.093	(4.4, 11.2) 2.056	(4./, 11.1) 2.057	(4. /, 11.0) 2.084	(4.9, 11.0) 2.050	(5.0, 10.6) 2.046
(p) H-L	5.411	5.415	5.486	5.407	5.407	5.486		ļ
	(8.2)	(7.2)	(6.3)	(8.2)	(8.5)	(6.7)		
11-H (d)	5.390	5.391	5.435	5.385	5.386	5.431	- THE REAL PROPERTY IN THE REAL PROPERTY INTERNAL PROPERT	-
	(0.0)	(8.8)	(5.8)	(8.7)	(7.8)	(6.3)		
18-H ₃ (s)	0.581	0.583	0.696	0.576	0.574	0.699^{a} 0.704^{a}	0.710	0.708
19-H ₃ (s)	0.952	0.954	1.036	0.951	0.950	1.037	0.983	0.983
21-H ₃ (d)	0.922	0.923	0.985	0.882 0.890	0.881 0.891	0.963 0.966	0.929	0.893 0.902
	(9.9)	(9.9)	(5.0)	(7.1) (6.6)	(7.2) (6.4)	(6.4) (6.5)	(9.9)	(0.0) (0.0)
25-H (sept)	2.238	2.240	2.301	-	I	A REAL PROVIDED IN THE REAL PROVIDED INTERNATION FROM THE REAL PROVIDOVERIAL PROVIDED INTERNATION FROM THE REAL PR	2.236	-
	(1.0)	(1.1)	(7.2)				(9.9)	
26-H ₃ (d)	1.029	1.029	1.084	0.856 0.860	0.855 0.860	0.890 0.896	1.025	0.856 0.859
	(7.2)	(9.9)	(6.8)	(9.9) (9.9)	(6.9) (6.9)	(6.4) (6.4)	(9.9)	(7.0) (6.4)
27-H ₃ (d)	1.033	1.034	1.090	0.808 0.787	0.807 0.786	0.845 0.834	1.031	0.809 0.787
	(9:9)	(1.1)	(1.1)	(9.9) (9.9)	(6.8) (6.8)	(6.8) (6.8)	(7.1)	(6.4) (6.8)
28-H ₂	4.668 (1H)	4.669 (1H)	4.883 (1H)				4.665 (1H)	
	(d, 1.1)	(d, 1.6)	(<i>s</i>)				(q, 1.6)	
	4.722 (IH)	4.722 (1H)	4.893 (1H)				4.716 (1H)	
	(<i>s</i>)	(<i>s</i>)	(s)				(2)	
28-H ₃ (d)				0.785	0.784	0.845		0.784 0.782
				(9:9)	(6.8)	(6.8)		(6.7) (6.4)
30-H ₃ (d)	0.866	0.866	0.896	0.865	0.864	0.890	0.859	0.859
	(9.9)	(0.0)	(0.0)	(0.0)	(6.4)	(6.6)	(9.9)	(6.4)
31-H ₄ (s)	0.896	0.899	166.0	168.0	0.890	0.988	168.0	0.889

* Figures in parentheses denote J values (Hz). Unless stated otherwise, the spectra were recorded in CDCl₃. **2b**, c-Acetate was run at 600 MHz. †Isolated from Gynostemma pentaphyllum.

*Isolated from Phaseolus vulgaris.

§Prepared from 1a isolated from P. tulgaris. **Prepared from obtusifoliol.**• The higher-field signal is arbitrarilly assigned to the 26-H₃, and the lower-field signal to the 27-H₃ as for the compound possessing side chain a.
*Assignment may be interchanged.

1.0011001

NUMBER OF

3

147.04 1.4.2

1600 F. 1600 - 1000

1.000.000

и стал. 1999 г. 1999 г. 1999 г.

W. . S. I. R. M. I. M.

DAL - DAL

Table 1. ¹H NMR data of the acetates of some 4x-methylsterols (400 MHz, TMS as int. standard)*

The UV spectrum (in EtOH) revealed maxima at 237, 243 and 251 nm typical of the presence of a $\Delta^{7, 9(11)}$ -diene system in the sterol nucleus [11, 12] which was associated with two olefinic methine signals at δ 5.386 and 5.412 observed in the ¹H NMR spectrum (CDCl₃). The ¹H NMR spectrum (CDCl₃) further showed that **1a**acetate possessed the common 3β -acetoxy-4 α -methyl-5 α steroid nucleus by exhibiting the signals at δ 0.866 (3H, d, 30-H₃, J = 6.0 Hz), 2.057 (3H, s, 3β -OAc), and 4.397 (1H, $dt, 3\alpha$ -H, J = 4.4, 9.5 Hz) which were almost identical with those of **2a**-acetate (Table 1). Thus, the structure of **1a** was assigned as 4α , 14 α -dimethyl-5 α -ergosta-7,9(11),24(28)trien-3 β -ol. This assignment was confirmed by chemical correlation with obtusifoliol (**2a**) acetate.

 Δ^8 -Mono-unsaturated 4,4,14-trimethylsteroids and triterpenoids yield the corresponding $\Delta^{7,9(11)}$ -diene compounds upon dehydrogenation with selenium dioxide [12–14]. This reaction can be applied to the synthesis of $\Delta^{7,9(11)}$ -di-unsaturated 4 α -methylsterols from the corresponding Δ^8 -monoenes. Thus, upon hydrogenation, **1a**acetate afforded a mixture of the 24(28)-dihydro derivative, **1b**, c-acetate, which was identical (NMR) with a mixture of the epimers at C-24 prepared from obtusifoliol (**2a**) acetate by hydrogenation of the 24-methylene group followed by the selenium dioxide dehydrogenation of the resulting 24(28)-dihydro derivative, **2b**, c-acetate. The $\Delta^{7,9(11)}$ -di-unsaturated 4 α -methylsterol, **1a**, was also isolated from the acetylated 4 α -methylsterol fraction of *Gynostemma pentaphyllum* extract. See Table 1 for a NMR comparison.

The ¹H NMR spectra of **1b**, **c** and **2b**, **c** were partially assigned using triterpene data of 24-methylene- 5α lanosta-7,9(11)-diene- 3β -ol [15]. The assignment was supported by ¹H-¹H 2D COSY NMR data of synthetic **1b**, **c**-acetate in both chloroform-*d* and pyridine- d_5 . The COSY experiments made it also possible to assign several ¹H signals, in addition to those listed in Table 1 (see Experimental section). The ¹³C NMR spectral data for synthetic **1b**, **c**-acetate are listed in Table 2. These assignments were based on the DEPT experiments and by the comparison of the ¹³C NMR data with those of relevant compounds reported in the literature [15–18].

This appears to be the first report of the occurrence of a 4α -methylsterol possessing a $\Delta^{7, 9(11)}$ -diene system from natural sources. The presence of **1a** in plants of the taxonomically not closely correlated Leguminosae and Cucurbitaceae families may suggest its wider distribution in higher plants.

Several $\Delta^{7, 9(11)}$ -di-unsaturated 4,4,14-trimethylsterols and 4,14-demethylsterols are known to occur in nature. The known 4,4,14-trimethylsterols (lanostane type triterpene alcohols) are agnosterol [5 α -lanosta-7,9(11),24trien-3 β -ol] and its 24-dihydro derivative, 24-dihydroagnosterol from wool fat [3, 12], and 24-methylene-5 α lanosta-7,9(11)-dien-3 β -ol from Artabotrys odoritissimus (Annonaceae) [15] and Neolitsea sericea (Lauraceae) (K. Yano, T. Akihisa, T. Tamura and T. Matsumoto, unpublished results). The known 4,14-demethylsterols are 5 α -stigmasta-7,9(11),Z-24(28)-trien-3 β -ol from sunflower oil [19] and 5 α -ergosta-7,9(11),24(28)-trien-3 β -ol from a Black Sea sponge, Haliclona flavescens [20].

After about 20 years of intense isolation work marine organisms might perhaps be almost exhausted as sources of new sterols. The isolation of **1a** from two different sources shows again that it is not too hard to find new sterols in higher plants. The number of known plant

 Table 2.
 1³C NMR
 spectral
 data

 (100.62 MHz, CDCl₃) of the epimeric acetates of compounds 1b, c*

С	1b-acetate	1c-acetate
1	34.34 (CH ₂)	
2	27.36 (CH ₂)	
3	78.33 (CH)	
4	36.72 (CH)	
5	45.58 (CH)	
6	26.42 (CH ₂)	
7	118.97 (CH)	
8	142.97 (C)	
9	143.13 (C)	
10	36.31 (C)	
11	117.40 (CH)	
12	37.88 (CH ₂)	
13	43.73 (C)	
14	50.38 (C)	
15	31.4	48 (CH ₂)
16	27.86 (CH ₂)	27.90 (CH ₂)
17	51.05 (CH)	50.91 (CH)
18	15.70 (Me)	
19	20.53 (Me)	
20	36.41 (CH)	36.60 (CH)
21	18.49 (Me)	18.67 (Me)
22	33.93 (CH ₂)	
23	30.63 (CH ₂)	30.94 (CH ₂)
24	38.86 (CH)	39.09 (CH)
25	32.43 (CH)	31.42 (CH)
26	20.20 (Me)	17.56 (Me)
27	18.29 (Me)	20.60 (Me)
28	15.41 (Me)	15.45 (Me)
30	15.11 (Me)	
32	25.60 (Me)	
COMe	21.34 (Me)	
COMe	170.91 (C)	

*Carbon types were determined by DEPT experiments.

sterols [21, 22] is still far behind the number of known marine sterols [23–25] (\approx 140 vs > 200).

EXPERIMENTAL

Crystallizations were performed from Me₂CO-MeOH. Mps: uncorr. Prep. TLC: silica gel plates were developed $\times 3$ with hexane-EtOAc (6:1); argentation prep. TLC: silica gel-AgNO3 (4:1) plates were developed \times 3 with CCl₄-CH₂Cl₂(5:1). HPLC: Altex Ultrasphere ODS 5μ column (Beckman; $25 \text{ cm} \times 10 \text{ mm}$ i.d.), MeOH-H₂O (49:1) as mobile phase (flow rate, 4 ml/min). GC: SCOT OV-17 glass capillary column (30 m × 0.3 mm i.d.), column temp. 255°. RR, on HPLC and GC listed are relative to cholesteryl acetate. All EIMS were run at 70 eV with a probe. The MS data do not include peaks with m/z < 200. ¹H NMR (400 or 600 MHz) and ¹³C NMR (100.62 MHz) spectra were determined in $CDCl_3$ or in pyridine- d_5 with TMS as int. standard. UV spectra were recorded in EtOH. Acetylation: Ac₂O-pyridine at room temp. overnight. Alkaline hydrolysis of the steryl acetate was performed in 5% KOH-MeOH at room temp. overnight. Hydrogenation was carried out in EtOH using pre-reduced PtO2 at atm. pres. and room temp. overnight. Obtusifoliol (2a) was isolated from the latex of Euphorbia regisjubae [26].

Isolation of 4α , 14α -dimethyl- 5α -ergosta-7, 9(11), 24(28)-trien-3\betaol (1a) from Phaseolus vulgaris seeds. The 4α -methylsterol fraction separated from the MeOH extract of the immature seeds of P. vulgaris was acetylated, and the acetate fraction (167 mg) subjected to argentation TLC which afforded 4 bands [5]. The fraction (27 mg) from the most polar band (R_f 0.07–0.21), contained la-acetate, was further fractionated by HPLC yielding 1a-acetate (RR,: HPLC, 0.66; GC, 1.45) (0.6 mg) isolated. See ref. [5] for a chart of other 4α -methylsterols from the same source. Abundance of la-acetate in the total acetylated 4x-methylsterols was found to be 1.8% as determined by GC. Mp 123-124° MS m/z (rel. int.): 466.3806 [M]⁺ (97, C₃₂H₅₀O₂, requires 466.3807), 451.3621 (19, C31H47O2), 423.3231 (5, C29H43O2), 406.3641 (8, $C_{30}H_{46}$), 391.3340 (24, $C_{29}H_{43}$), 382.2871 (5, $C_{26}H_{38}O_2$), 367.2638 (14, C₂₅H₃₅O₂), 339.2303 (100, C₂₃H₃₁O₂), 325.2218 $(5, C_{22}H_{29}O_2), 314.2198 (5, C_{21}H_{30}O_2), 309.2619 (5, C_{23}H_{33}),$ 307.2423 (5, C23H31), 300.2057 (22, C20H28O2), 299.1993 (32, C₂₀H₂₇O₂), 298.1899 (22, C₂₀H₂₆O₂), 287.2013 (5, C₁₉H₂₇O₂), 285.2262 (8, C19H27O2), 281.2262 (11, C21H29), 274.1927 (14, $C_{18}H_{26}O_2$), 265.1940 (5, $C_{20}H_{25}$), 259.1657 (8, $C_{17}H_{23}O_2$), 239.1769 (65, C18H23), 227.1779 (22, C17H23), 226.1723 (35, $C_{17}H_{22}$), 225.1646 (30, $C_{17}H_{21}$), 213.1635 (22, $C_{16}H_{21}$), 211.1487 $(22, C_{16}H_{19})$. UV λ_{max} nm: 237, 243, 251. For the ¹H NMR data, see Table 1. Hydrogenation of 1a-acetate afforded 4α , 14α dimethyl-5\alpha-ergosta-7,9(11)-dien-3\beta-ol (1b, c) acetate (C-24 epimeric mixture).

4α,14α-Dimethyl-5α-ergosta-7,9(11)-dien-3β-ol (**1b**, **c**) acetate prepared from **1a**-acetate by hydrogenation. RR,: HPLC, 0.91; GC, 1.43. MS m/z (rel. int.): 468.3973 [M]⁺ (100, $C_{32}H_{52}O_2$, requires 468.4965), 453.3769 (17, $C_{31}H_{49}O_2$), 408.3733 (6, $C_{30}H_{48}$), 393.3480 (15, $C_{29}H_{45}$), 341.2428 (6, $C_{23}H_{33}O_2$), 299.2025 (15, $C_{20}H_{27}O_2$), 287.2032 (11, $C_{19}H_{27}O_2$), 281.2264 (9, $C_{21}H_{29}$). 274.1918 (9, $C_{18}H_{26}O_2$), 239.1789 (30, $C_{18}H_{23}$), 226.1736 (23, $C_{17}H_{22}$), 225.1668 (15, $C_{17}H_{21}$), 213.1676 (9, $C_{16}H_{21}$), 211.1488 (11, $C_{16}H_{19}$). UV λ_{max} nm: 233, 243, 250. For the ¹H NMR data, see Table 1.

Isolation of 4α -methylsterols including 4α , 14α -dimethyl- 5α ergosta-7,9(11),24(28)-trien-3β-ol (1a) from Gynostemma pentaphyllum. Air-dried aerial parts (20 kg) of G. pentaphyllum were extracted with CH₂Cl₂ under reflux for 7 hr to give 580 g lipid which was saponified (5% KOH in MeOH) under reflux for 3 hr and then unsaponifiable lipid (107 g) were subjected to CC over silica gel (700 g). Elution in order of increasing polarity: hexane (2.5 l), hexane-Et₂O (9:1, 3.0 l), hexane-Et₂O (4:1, 2.5 l), hexane-EtOAc (6:1, 9.0 l), hexane-EtOAc (3:1, 2.5 l), and then with MeOH (2.01) [2, 27]. The fractions (8.68 g) eluted with hexane-Et₂O (4:1) were found to contain 4α -methylsterols (the elution was monitored by TLC on precoated silica gel). They yielded a clean 4x-methylsterol mixture (30 mg) by successive CC and prep. TLC purification. The 4a-methylsterol mixture was acetylated, and the acetates (25 mg) were subjected to HPLC fractionation to give six isolated 4α -methylsteryl acetates; 1aacetate (RR_t: HPLC, 0.70; GC, 1.46) (0.3 mg; abundance in the 4α -methylsterol mixture as determined by GC, 1.9%); 2a-acetate (RR_i: HPLC, 0.83; GC, 1.49) (1.1 mg; 1.7%); cycloeucalenol [4amethyl-9 β ,19-cyclo-5 α -ergost-24(28)-en-3 β -ol] acetate (*RR*; HPLC, 0.90; GC, 1.77) (1.0 mg; 13.4%); gramisterol [4a-methyl- 5α -ergosta-7,24(28)-dien-3 β -ol] acetate (*RR*, HPLC, 0.99; GC, 1.79) (4.5 mg; 60.0%); 24β -ethyl-25-dehydrolophenol [4 α methyl-24 β -ethyl-5 α -cholesta-7,25-dien-3 β -ol] acetate (RR): HPLC, 1.13; GC, 2.17) (1.7 mg; 7.4%); and citrostadienol [4αmethyl-5 α -stigmasta-7Z,24(28)-dien-3 β -ol] acetate (RR_i: HPLC, 1.21; GC, 2.38) (1.1 mg; 4.9%). Identification of the latter five 4α methylsteryl acetates was based on their HPLC and GC data [5]. MS of **1a**-acetate: m/z (rel. int.): 466 [M]⁺ (100), 451 (23), 423

(7), 406 (10), 391 (30), 382 (7), 367 (17), 339 (92), 300 (27), 299 (40), 298 (27), 287 (17), 281 (13), 274 (17), 239 (80), 227 (27), 226 (43), 225 (37), 213 (25), 211 (27). For ¹H NMR data of **1a**-acetate, see Table 1. Identification of 24β -ethyl-25-dehydrolophenyl acetate was supported by the following spectroscopic data [28]: Mp 166–168°. MS *m/z* (rel. int.): 468 [M]⁺ (49), 453 (23), 408 (4), 393 (5), 357 (6), 356 (5), 327 (100), 313 (5), 302 (9), 287 (7), 269 (34), 243 (11), 241 (14), 227 (23), 215 (7), 213 (5). ¹H NMR data (CDCl₃, 400 MHz). Assignment, δ (multiplicity, *J* in Hz): 3 α -H, 4.401 (*dt*, 3.8, 11.0); 3 β -OAc, 2.052 (*s*); 18-H₃, 0.525 (*s*); 19-H₃, 0.836 (*s*); 21-H₃, 0.909 (*d*, 6.6); 26-H₃, 1.565 (*d*, 1.0); 27-H₂, 4.642 (1H, *d*, 2.8), 4.729 (1H, *dt*, 3.8, 1.4); 29-H₃, 0.803 (*t*, 7.4); 30-H₃, 0.850 (*d*, 6.6). Synthesis of 4 α ,14 α -dimethyl-5 α -ergosta-7,9(11)-dien-3 β -ol

(**1b**, **c**) acetate from obtusifoliol (**2a**) acetate.

 4α , 14α -Dimethyl- 5α -ergost-8-en- 3β -ol (**2b**, **c**) acetate. Catalytic hydrogenation of **2a**-acetate (mp. 113–115°; MS *m/z*: 468 [M]⁺; see Table 1 for the ¹H NMR data) (100 mg) yielded the C-24 (28) dihydro derivative, **2b**, **c**-acetate (*RR*; GC, 1.46) (97 mg). Mp 126–128°. MS *m/z*: 470 [M]⁺. For ¹H NMR data, see Table 1.

Synthetic 4α , 14α -dimethyl- 5α -ergosta-7, 9(11)-dien- 3β -ol (1b, c) acetate. A soln of SeO₂ (100 mg) in 96% HOAc (2 ml) was added to a soln of 2b, c-acetate (50 mg) in glacial HOAc (14 ml) and the mixture gently refluxed for 20 hr. After the usual work-up and argentation TLC, 4a,14a-dimethyl-5a-ergosta-7,9(11)-dien-3\beta-ol (1b, c) acetate was obtained (RR,: HPLC, 0.91; GC, 1.42) (13 mg). Mp 129–131°. MS m/z (rel. int.): 468 [M]⁺ (100), 453 (17), 408 (5), 393 (14), 341 (10), 299 (17), 287 (10), 281 (6), 274 (9), 239 (23), 226 (18), 225 (12), 213 (7), 211 (7). UV λ_{max} : 233, 242, 250 nm. The ¹H and ¹³CNMR spectral data are listed in Tables 1 and 2, respectively. ¹H NMR data not included in Table 1 (400 MHz) are given below. Assignment (CDCl₃), δ (multiplicity, J in Hz): 1α -H, ca 1.33 (m); 1β -H, ca 1.58 (m); 2α -H, 1.941 (ddt, 12.4, 12.6, 4.1); 2β-H, 1.414 (ddt, 4.1, 13.0, 13.7); 4β-H, 1.568 (ddg, 12.5, 14.0, 5.9); 5α-H, 1.091 (dt, 4.1, 12.2); 6α-H, 2.212 (ddd, 4.1, 8.0, 17.2); 6β-H, 1.759 (dd, 11.1, 17.5); 12α -H, 2.103 (ddd, 1.6, 6.7, 17.5); 12β -H, 2.230 (br d, 15.8). ¹H NMR data (pyridine- d_5). Assignment, δ (multiplicity, J in Hz): 1x-H, ca 1.37 (m); 1β-H, ca. 1.47 (m); 2x-H, 2.007 (ddt, 7.6, 8.5, 4.3); 2β-H, ca 1.72 (m); 4β-H, 1.588 (ddq, 13.4, 15.8, 6.7); 5a-H, 1.115 (dt, 3.6, 11.1); 6a-H, 2.180 (ddd, 6.2, 6.3, 17.8); 6β -H, 1.739 (*dd*, 12.1, 17.4); 12α -H, 2.137 (*ddd*, 4.7, 4.8, 17.7); 12β-H, 2.271 (br d, 17.7).

Synthetic 4α , 14α -dimethyl- 5α -ergosta-7,9(11)-dien- 3β -ol (1b, c). Alkaline hydrolysis of 1b, c-acetate gave free sterol 1b, c. Mp 169–170°. MS m/z (rel. int.): 426.3879 [M]⁺ (100, C₃₀H₅₀O₁, requires 426.3859), 411.3638 (22, C₂₉H₄₇O₁), 393.3545 (6, C₂₉H₄₅), 299.2342 (11, C₂₁H₃₁O₁), 257.1901 (37, C₁₈H₂₅O₁), 244.1812 (15, C₁₇H₂₄O₁), 239.1768 (12, C₁₈H₂₃), 232.1825 (9, C₁₆H₂₄O₁), 226.1713 (12, C₁₇H₂₂), 217.1598 (6, C₁₅H₂₁O₁), 211.1492 (6, C_{1.6}H_{1.9}). ¹H NMR data (CDCl₃, 600 MHz). Assignment, δ (multiplicity, J in Hz): 3α -H, 3.118 (dt, 4.7, 11.0); 7-H, 5.421 (d, 6.7); 11-H, 5.386 (d, 6.1); 18-H₃, 0.581 (either for 24 α - or 24 β -epimer) and 0.583 (either for 24 β - or 24 α -cpimer) (s); 19-H₃, 0.942 (s); 21-H₃: 0.887 (24 α , d, 6.5), 0.895 (24 β , d, 6.3); 26-H₃: 0.858 (24 α , d, 6.9), 0.863 (24 β , d, 7.1); 27-H₃: 0.811 (24 α , d, 7.0), 0.791 (24 β , d, 7.1); 28-H₃; 0.788 (24 α , d, 6.6), 0.787 (24 β , d, 6.9); 30-H₃, 1.001 (d, 6.5); 32-H₃, 0.895 (s).

Acknowledgements—We thank Dr K. Furuhata (Institute of Applied Microbiology, The University of Tokyo) and Miss J. Nasu (Nihon University) for NMR spectra and Dr M. Aimi (Nihon University) for the mass spectra.

REFERENCES

 Akihisa, T., Mihara, H., Tamura, T. and Matsumoto, T. (1988) J. Jap. Oil Chem. Soc. (Yukagaku) 37, 659.

- 2. Akihisa, T., Tamura, T., Matsumoto, T., Kokke, W. C. M. C. and Yokota, T. (1989) J. Org. Chem. 54, 606.
- Nes, W. R. and McKean, M. L. (1977) Biochemistry of Steroids and Other Isopentenoids. University Park Press, Baltimore.
- 4. Benveniste, P. (1986) Ann. Rev. Plant Physiol. 37, 275.
- 5. Akihisa, T., Yokota, T., Takahashi, N., Tamura, T. and Matsumoto, T. (1989) *Phytochemistry* 28, 1219.
- 6. Knights, B. A. (1967) J. Gas Chromatogr. 5, 273.
- 7. Wyllie, S. G. and Djerassi, C. (1968) J. Org. Chem. 33, 305.
- 8. Massey, I. J. and Djerassi, C. (1979) J. Org. Chem. 44, 2448.
- Doyle, P. J., Patterson, G. W., Dutky, S. R. and Thompson, M. J. (1972) Phytochemistry 11, 1951.
- Knapp, F. F., Phillips, D. O., Goad, L. J. and Goodwin, T. W. (1972) Phytochemistry 11, 3497.
- 11. Djerassi, C., Romo, J. and Rosenkranz, G. (1951) J. Org. Chem. 16, 754.
- 12. Fieser, L. F. and Fieser, M. (1959) Steroids. Reinhold, New York.
- 13. Sengupta, P. and Khastgir, H. N. (1963) *Tetrahedron* **19**, 123. 14. Akihisa, T., Tamura, T., Matsumoto, T., Eggleston, D. S. and
- Kokke, W. C. M. C. (1988) J. Chem. Soc. Perkin Trans. 1, 439.
- Hasan, C. M., Shahnaz, S., Muhammad, I., Gray, A. I. and Waterman, P. G. (1987) J. Nat. Prod. 50, 762.
- 16. Kikuchi, T., Kadota, S., Matsubara, S., Suehara, H. (1986)

Chem. Pharm. Bull. 34, 3183.

- 17. Akihisa, T. and Matsumoto, T. (1987) J. Jap. Oil Chem. Soc. (Yukagaku) 36, 301.
- Akihisa, T. (1989) in Analysis of Sterols and Other Biologically Significant Steroids. (Nes, W. D. and Parish, E. J., eds), Chapter 12. Academic Press, New York.
- 19. Homberg, E. E. and Schiller, H. P. K. (1973) *Phytochemistry* 12, 1767.
- 20. Zielinski, J., Milkowa, T., Popov, S., Marekov, N. and Djerassi, C. (1982) Steroids 39, 675.
- 21. Akihisa, T. (1986) J. Jap. Oil Chem. Soc. (Yukagaku) 35, 715.
- 22. Akihisa, T. and Matsumoto, T. (1988) ISI Atlas of Science: Animal and Plant Sci. 1, 100.
- Djerassi, C., Theobald, N., Kokke, W. C. M. C., Pak, C. S. and Carlson, R. M. K. (1979) Pure Appl. Chem. 51, 1815.
- 24. Djerassi, C. (1981) Pure Appl. Chem. 53, 873.
- Djerassi, C. (1984) Proceedings of the Alfred Benzon Symposium 20. (Krogsgaard-Larsen, P., Christensen, S. B. and Kofod, H., eds), p. 164. Munksgaard, Copenhagen.
- 26. Itoh, T., Uchikawa, K., Tamura, T. and Matsumoto, T. (1977) Phytochemistry 16, 1448.
- 27. Akihisa, T., Kanari, M., Tamura, T. and Matsumoto, T. (1989) Phytochemistry 28, 1271.
- Itoh, T., Kikuchi, T., Shimizu, N., Tamura, T. and Matsumoto, T. (1981) *Phytochemistry* 20, 1929.