Synthesis of 2H-1,3-Benzothiazine Derivatives via Modified Ritter Reaction

Dinesh K. THAKUR, Yashwant D. VANKAR*

Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India*

and National Chemical Laboratory, Poona 411008, India

The pharmacological activities $^{1-9}$ (antiinflammatory, analgesic, psychotropic, antibacterial) of 1,2-, 1,3-, and 1,4-benzothiazine derivatives have arosed interest in the synthesis of ^{2}H -1,3-benzothiazines (1). The known method 10,11,12 for their synthesis (Scheme A) cannot be applied to the products 1 where $R^{1} = R^{2} = H$. T.L.C. analysis of the reaction mixture revealed a number of spots, none of which, however, corresponded to the desired cyclized product. The only product identified was diphenyl disulfide along with some unreacted starting material.

Scheme A

We have now developed a general method for the synthesis of compounds 1 where R^1 , $R^2 = H$ or R^1 , $R^2 \neq H$ using a modified Ritter reaction ¹³⁻¹⁶ (Scheme B). Thus, treatment of a chloromethyl aryl sulfide 2 with a nitrile 3 in the presence of a Lewis acid such as antimony pentachloride led to the formation of the desired products 1 in fair yields (Table).

224 Communications SYNTHESIS

Table. 2H-1,3-Benzothiazines 1a-i prepared

Produ No.		R ²	R ³	Reaction Conditions temperature/ time	Yield [%]	M.S. m/e (M ⁺)	I.R. ν _{C==N} [cm ¹]	¹ H-N.M.R. (CDCl ₃) δ [ppm]	N-Methiodide 4		
									Yield [%]	m.p. [°C]	Molecular formula
1a	Н	н	CH ₃	1. 0 °C/ 3 h 2. 30 °C/15 h	57	163	1600	2.26 (s, 3 H); 4.33 (s, 2 H); 7.1 (m, 4 H)	77	204-206°	C ₁₀ H ₁₂ JNS (305.2)
1b	CH ₃	Н	CH ₃	1. 0 °C/ 3 h 2. 30 °C/15 h	48	177	1635	2.33 (s, 6 H); 4.40 (s, 2 H); 7.1 (m, 3 H)	73	175-176°	C ₁₁ H ₁₄ JNS (319.2)
1c	CH ₃	Н	4-H ₃ C—C ₆ H ₄	0 °C/8 h	32	253	1590	2.25 (s, 3 H); 2.40 (s, 3 H); 4.55 (s, 2 H); 7.2 (m, 7 H)	70	228-230°	C ₁₇ H ₁₈ JNS (395.3)
1d	CH ₃	Н	4-H ₃ CO—C ₆ H ₄	0 °C/8 h	27	269	1610	2.20 (s, 3 H); 3.66 (s, 3 H); 4.43 (s, 2 H); 7.0 (m, 7 H)	70	192-193°	C ₁₇ H ₁₈ JNOS (411.3)
1e	Н	Н	C ₆ H ₅	0 °C/5 h	19	225	1610	4.50 (s, 2H); 7.3 (m, 9H)	63	194-196°	C ₁₅ H ₁₄ JNS (367.3)
lf	CH ₃	Н	C ₆ H ₅	0°C/6 h	21	239	1600	2.16 (s, 3 H); 4.55 (s, 2 H); 7.3 (m, 8 H)	80	207~210°	C ₁₆ H ₁₆ JNS (381.3)
1g	Н	Н	C ₆ H ₅ CH ₂	1. 0 °C/ 3 h 2. 30 °C/ 3 h	19	239	1630	3.95 (s, 2 H); 4.60 (s, 2 H); 7.1 (m, 9 H)	75	180~181°	C ₁₆ H ₁₆ JNS (381.3)
1h	CH ₃	Н	C ₆ H ₅ CH ₂	1. 0 °C/ 3h 2. 30 °C/ 2h	20	253	1610	2.13 (s, 3 H); 3.84 (s, 2 H); 4.37 (s, 2 H); 7.0 (m, 8 H)	69	176-178°	C ₁₇ H ₁₈ JNS (395.3)
1i	Н	CH ₃	CH ₃	1. 0 °C/ 3 h 2. 30 °C/15 h	37	177	1635	2.33 (s, 6H); 4.43 (s, 2H); 7.1 (m, 3H)	78	149-150°	C ₁₁ H ₁₄ JNS (319.2)

^a Satisfactory microanalyses obtained: C ± 0.05 , H ± 0.07 , N ± 0.29 , J ± 0.35 , S ± 0.37 . The I.R. and ¹H-N.M.R. spectra were in accord with the proposed structures.

Scheme B

The order of mixing of the reactants plays an important role in the success of the synthesis. Thus, addition of an equimolar amount of antimony pentachloride to a nitrile 3 in dry dichloromethane followed by the addition of an equimolar amount of chloromethyl aryl sulfide 2 gave the best results (Table). On the other hand, addition of nitrile 3 to a mixture of antimony pentachloride and chloromethyl aryl sulfide 2 gave no or poor yields of the products.

The generally thick, oily products 1 were purified by column chromatography and characterized by spectral means and by conversion to the crystalline N-methiodide derivatives 4.

2H-1,3-Benzothiazenes 1a-i; General Procedure:

To a stirred solution of nitrile 3 (0.01 mol) in dry dichloromethane (10 ml), a solution of antimony pentachloride (2.995 g, 1.4 ml, 0.01 mol) in dichloromethane (5 ml) is added dropwise during 10 min at 0 $^{\circ}$ C under a nitrogen atmosphere. After 3 h stirring, a solution of chloromethyl aryl sulfide 2 (0.01 mol) in dichloromethane (10 ml) is added dropwise during 30 min at 0 $^{\circ}$ C, stirring is continued for 3–8 h at 0 $^{\circ}$ C and in some cases (Table) stirring is additionally continued at 30 $^{\circ}$ C for 2–15

h. The reaction mixture is then poured into ice (20 g), neutralized with 20% aqueous sodium hydroxide solution (\sim 10 ml) and extracted with benzene or ether (4×20 ml). The organic layer is then extracted with 20% aqueous hydrochloric acid (3×20 ml). The aqueous layer so obtained is thoroughly washed with benzene or ether (4×20 ml), cooled to 0 °C, neutralized with 20% aqueous sodium hydroxide (\sim 40 ml), and extracted with benzene or ether (5×20 ml). The organic phase is separated, washed with water (3×15 ml) and brine (15 ml) and dried with anhydrous sodium sulfate. Removal of solvent under vacuum at low temperature gives a crude product which is purified by column chromatography over silica gel with benzene/ethyl acetate (90:10) as eluent to yield pure the 2H=1,3-benzothiazine 1 (Table).

N-Methiodides 4 of 2H-1,3-Benzothiazines 1; General Procedure:

The 2*H*-1,3-benzothiazine 1 (500 mg) is stirred with an excess of methyl iodide (3 ml) for 18 h at room temperature during which time crystals of the *N*-methiodide derivative 4 separate out. The crystals are collected by filtration, washed with dry ether, and recrystallized from methanol/ether to give the pure *N*-methiodide 4 (Table).

Received: May 26, 1982 (Revised form: August 30, 1982)

^{*} Correspondence author and address.

¹ J. G. Lombadino, E. H. Wiseman, W. M. McLamove, J. Med. Chem. 14, 1171 (1971).

² J. G. Lombadino, E. H. Wiseman, *J. Med. Chem.* 15, 848 (1972); 16, 493 (1973).

³ E. Sianesi, R. Radnelli, M. J. Magistretti, E. Massarani, J. Med. Chem. 16, 1133 (1973).

H. Zinner, N. A. Lindo, J. C. Sircar, M. L. Schwartz, J. Sharel Jr., G. Dipaszale, J. Med. Chem. 16, 44 (1973).

⁴ K. Fujii, Y. Kowa, G. Hayashi, Yakugaku Zasshi 77, 362 (1957); C. A. 51, 12 334 (1957).

G. Hayashi, Y. Kowa, K. Fujii, M. Tasaka, Yakugaku Zasshi 78, 716 (1958); C. A. 52, 16596 (1958).

- ⁵ A. Funke, G. Funke, B. Millet, Bull. Soc. Chim. Fr. 1961, 1524.
- ⁶ Stecker International S.P.A., French Patent 1 481713 (1967); C. A. 68, 105215 (1968).
- N. D. Heindel, L. A. Schaeffer, J. Heterocyclic Chem. 12, 783 (1975).
- ⁸ J. Krapcho, U. S. Patent 3 459 748 (1969); C. A. 71, 91 502 (1969).
- J. Szabo, E. Vinkler, I. Varga, E. Barthos, Kemiai Kozlemenyk 26, 21 (1966); C. A. 66, 46384 (1967).
- J. Szabo, L. Fodor, I. Varga, P. Sohar, Acta Chim. Acad. Sci. Hung. 88, 149 (1976).
- J. Szabo, L. Fodor, I. Varga, E. Vinkter, P. Sohar, Acta Chim. Acad. Sci. Hung. 92, 317 (1977).
- ¹² J. Szabo, L. Fodor, I. Varga, P. Sohar, *Acta Chim. Acad. Sci. Hung.* 93, 403 (1977).
- ¹³ F. Johnson, R. Madronero, Adv. Heterocyclic Chem. 6, 95 (1966).
- A. I. Meyers, J. C. Sircar, The Chemistry of the Cyano Group, Chapter 8, Z. Rappoport, Ed., Interscience Publication, London, 1970.
- 15 C. Avellana, V. Gomez-Parra, Synthesis 1976, 252.
- M. Lora-Tomayo, R. Madronero, D. Gracian, V. Gomez-Parra, Tetrahedron (Suppl. 8, Part I) 1966, 305.