THE STRUCTURES OF POLYOXINS A AND B* Kiyoshi Isono and Saburo Suzuki The Institute of Physical and Chemical Research Yamato-machi, Saitama, Japan (Received in Japan 10 November 1967)

Polyoxins A and B, as have been reported¹⁾, are main active components of agriculturally useful antifungal antibiotics, polyoxins. In the preceding paper ²⁾, we proposed the structure of polyoxin C. This communication presents evidences which assign the structures I and II to polyoxins A and B, respectively. The structures are quite unique and can be designated "peptidic nucleoside", because they are nucleosides simultaneously being tri- or dipeptide of unusual all L- α -amino acids.

The schematic outline of hydrolyses of polyoxin A is shown in Fig. 1. Mild alkali hydrolysis³⁾ of polyoxin A (I), $C_{23}H_{32}N_6O_{14}$, $[\alpha]_D^{20}$ -30° (<u>c</u> 1.02, H_2O), gave four degradation products, 5-hydroxymethyluracil, polyoxin C (III), polyoximic acid (IV) and polyoxamic acid (V), evolving each one equiv of NH₃ and CO_2 . On the other hand, acid hydrolysis of I gave mainly three products, III,

^{*} This paper comprises part VII of the series, "Studies on Polyoxins, Antifungal Antibiotics". Preceding paper, part VI, K. Isono and S. Suzuki, <u>Tetrahedron Letters</u>, No. 2 (1968) in press.

F	Т	G		1
÷.		u	•	

IV and carbamylpolyoxamic acid (VI). 5-Hydroxymethyluracil was not appreciable and the yield of V was small.

The structure of polyoxin C and polyoximic acid were already presented as $1-\beta-(5'-amino-5'-deoxy-D-allofuranuronosyl)-5-hydroxymethyuracil (III), 3-ethylidene-L-azetidine-2-carboxylic acid (IV), respectively, in the previous papers of this series <math>2)4$.

Polyoxamic acid (V), $C_5H_{11}NO_5 \cdot H_2O$, $(\alpha)_D^{23} + 2.8^{\circ}$ (c 1.02, H_2O), $(\phi)_{213}$ +2,060pk (H_2O), $(\phi)_{224}$ +3,960pk (0.5N HCl), pKa' 2.9, 8.7, which was obtained either by acid or alkali hydrolysis, was presumed to be a straight-chain trihydroxyamino acid, because on periodate oxidation it gave approximately each one equiv of CO_2 , NH_3 and HCHO as well as 3 equiv of HCOOH consuming 4 equiv of periodate. The amino-position was suggested to be α by the paper-chromatographic detection of a tetrose on ninhydrin-oxidation⁵⁾ and the insusceptibility to ninhydrin of the Cu^{++} -complex⁶⁾. The unambiguous proof was made by converting V to N-acetyl- γ -lactone (VII), v^{CHCl}_3 1787, which was not oxidized with periodate, and the formation of a five-membered unsaturated lactone (VIII), λ_{max}^{MeOH} 243 mµ (ϵ 8,300), v^{CCl}_4 1,777, 1,753, by subsequent exaustive acetylation accompanied

Carbamylpolyoxamic acid (VI), $C_{6}H_{12}N_{2}O_{6}$, dp. 226-232°, $[\alpha]_{D}^{23}$ +1.3° (<u>c</u> 1.04, $H_{2}O$), $[\phi]_{2O9}$ 2,410pk ($H_{2}O$), $[\phi]_{224}$ 3,380pk (0.5N HC1), v^{KBr} 1,705, a predominant product of acid hydrolysis, gave V on mild alkali or prolonged acid hydrolysis; evolving each one equiv of NH₃ and CO₂. The carbamyl-position was presumed to be C5, because VI consumed 3 equiv of periodate. This was confirmed by obtaining a five-membered unsaturated lactone (X), $\lambda_{\text{max}}^{\text{MeOH}}$ 243 mµ (ϵ 8,880), $v^{\text{CHC1}3}$ 1,765, 1,740, 1,714, by acetylation. <u>Cis</u>-elimination is feasible because of the active nature of α -hydrogen. Thus, the structure, 5-<u>O</u>-carbamyl-2-amino-2-deoxy-L-xylonic acid (VI) was given to carbamýlpolyoxamic acid.

The sequence of the three unusual all $L-\alpha$ -amino acids, III, IV and VI, was established by the deamination method. I was deaminated first with nitrous acid,

^{*} We wish to thank Prof. M. L. Wolfrom, The Ohio State University, for a generous sample.

followed by alkali hydrolysis, affording III and IV, but no V, indicating V is N-terminal. The partial hydrolysis product with alkali (X), $C_{17}H_{22}N_4O_9$, van Slyke-NH₂ 0.72 equiv, probably be a diastereomeric mixture, was reacted similarly, affording IV but no III, indicating III is N-terminal.

The structure I is well consistent with the physical and chemical properties. The UV spectra, $\lambda_{max}^{\text{HCl}}$ 262mµ (ϵ 8,700), $\lambda_{max}^{\text{NaOH}}$ 264mµ (ϵ 6,400), are of polyoxin A. of the characteristics of the N-1-substituted uracil derivatives $^{9)}$. The pKa' values, 3.0, 7.3 and 9.6, correspond reasonably to -COOH, -NH, and uracil, respectively. The J value of an anomeric proton, 5.5 cps, is suggestive for the Moreover, I consumed rapidly 3 equiv of periodate, supportfuranose structure. ing strongly the structure I. Van Slyke-amino group determination gave 0.82 equiv in 10 min. and 1.49 equiv in 30 min., indicative of the presence of -NH₂ Consumption of 4 equiv of periodate by N-acetylpolyoxin A is expand -OCONH₂. lained by the overoxidation of an active α -hydrogen of an aldehyde produced by the primary oxidation of the polyoxamic acid moiety. Only the remaining part to be clarified is cis or trans configuration about a double bond.

Polyoxin B (II), $C_{17}H_{25}N_5O_{13}$, $(\alpha)_D^{20} + 34^\circ$ (<u>c</u> 1.03, H_2O), λ_{max}^{HC1} 262mµ (ϵ 8,700), λ_{max}^{NaOH} 264mµ (ϵ 7,400), is also an amphoteric compound (pKa' 3.0, 6.9, 9.4), hydrolysis of which gave the similar products as in the case of I except affording no IV and very small amount of 5-hydroxymethyluracil. II consumed also 3 equiv of periodate rapidly and the sequence was determined by deamination followed by hydrolysis in the similar way.

The unusually labile nature of the nucleosidic bond of I to alkali hydrolysis is reasonably explained by the susceptibility of a peptidic α -hydrogen to hydroxide ion (Fig. 2). In the case of II or III, a carboxylate anion prevent the dissosiation of the α -hydrogen, thus yielding no significant 5-hydroxymethyluracil. The analogous mechanisms were postulated to the alkali hydrolysis of adenosylmethionine¹⁰⁾ and the cyanide-catalysed decomposition of vitamine B_{12}^{11}

FIG. 2

We are indebted to Dr. Y. Sumiki for **his warm encouragement and Dr. S. Emo**to for his helpful discussion. We thank M**rs. K. Kobinata for her skillful** assistance.

REFFERENCES

- K. Isono, J. Nagatsu, Y. Kawashima and S. Suzuki, <u>Agr. Biol. Chem.</u>, <u>29</u>, 848 (1965).
- 2. K. Isono and S. Suzuki, Tetrahedron Letters, No. 2 (1968) in press.
- 3. K. Isono and S. Suzuki, Agr. Biol. Chem., 30, 813 (1966).
- 4. K. Isono and S. Suzuki, ibid., 30, 815 (1966).
- 5. P. J. Stoffyn and R. W. Jeanloz, Arch. Biochem. Biophys., 52, 373 (1954).
- 6. P. O. Larsen and A. Kjaer, Biochim. Biophys. Acta, 38, 148 (1960).
- 7. M. L. Wolfrom, D. Horton and A. Böckmann, Chem. Ind. (London), 41 (1963).
- 8. M. L. Wolfrom and K. Anno, J. Am. Chem. Soc., 75, 1038 (1953).
- 9. R. E. Cline, R. M. Fink and K. Fink, ibid., 81, 2521 (1959).
- J. Baddiley, W. Frank, N. A. Hughes and J. Wieczorkowski, <u>J. Chem. Soc.</u>, <u>1962</u>, 1999.
- 11. A. M. Johnson and N. Shaw, Proc. Chem. Soc., 1961, 447.