chromatographed over a silica gel column (L 100/160) using hexane—alcohol 10:1 as the eluent. The solvent was evaporated and the residue was distilled under vacuum to yield 0.2 g (5%) of (IIIa) and 0.1 g (3.4%) of t-BuS[CH₂C(CH₃)CO₂CH₃]₂H (IIIb), bp 132°C (1 mm), $n_{\rm D}^{20}$ 1.4700. Found %: C 56.90, H 8.81, S 11.36. $C_{14}H_{26}O_4S$. Calculated %: C 57.93, H 8.96, S 11.03.

CONCLUSIONS

1. In the telomerization of acrylic monomers with mercaptans, the change from initiation by peroxides to initiation by metal complexes leads to a significant change in the nature of the distribution of the homologs in favor of the adduct.

2. The distribution of the telomer homologs in reactions of n-butyl mercaptan with acrylonitrile, methyl acrylate, and methyl methacrylate with initiation by carbonyls of Mn, Mo, and Cr, in contrast to peroxide initiation, is practically insensitive to a change in the ratio of the reagents.

LITERATURE CITED

- R. Kh. Freidlina, A. B. Terent'ev, R. G. Petrova, et al., Dokl. Akad. Nauk SSSR, <u>288</u>, 1436 (1986).
- V. I. Dostovalova, A. B. Terent'ev, N. S. Ikonnikov, and R. Kh. Freidlina (Fredlina), Org. Magn. Res., <u>21</u>, 11 (1983).
- 3. F. Mayo, J. Am. Chem. Soc., 70, 3689 (1948).
- 4. G. P. Scott and F. J. Foster, Macromolecules, 2, 428 (1969).
- 5. G. P. Scott and A. M. R. Elghoul, J. Polym. Sci., Pt. Al, 8, 2255 (1970).
- 6. C. Walling, J. Am. Chem. Soc., <u>70</u>, 2561 (1948).
- 7. R. G. Petrova and R. Kh. Freidlina, Izv. Akad. Nauk SSSR, Otd. Khim. Nauk, 1, 59 (1962).

SYNTHESIS OF N-SUBSTITUTED DIAMIDES OF DIFLUOROMALONIC AND TETRAFLUOROSUCCINIC ACIDS AND X-RAY STRUCTURE OF THE N,N'-BIS(2-CARBOXYETHYL)DIAMIDE OF TETRAFLUOROSUCCINIC ACID

A. V. Fokin, I. V. Martynov, A. N. Chekhlov, A. I. Rapkin, and A. S. Tatarinov

Recently α, ω -bis(fluorosulfonyloxy)perfluoroalkanes have been used for the synthesis of perfluoroalkanedicarboxylic acids and their derivatives [1-3]. In this work, 1,3-bis-fluorosulfonyloxy)hexafluoropropane (I) and 1,4-bis(fluorosulfonyloxy)octafluorobutane (II) were synthesized by a method developed by us [4, 5] in which an atom of chlorine (or bromine) is replaced in perfluorinated alkylchlorides (or bromides) by an FSO₂O group. Treatment of (I) and (II) with excess MeOH in the presence of KF produces the dimethyl esters of difluoromalonic (III) and tetrafluorosuccinic (IV) acids.

 $\begin{array}{rcl} & \operatorname{Br}(\operatorname{CF}_2)_{n+2}\operatorname{Br}+2\operatorname{ClOSO}_2\operatorname{F}\xrightarrow{\operatorname{HSO}_3\operatorname{F}/\operatorname{SbF}_5}\operatorname{FSO}_2\operatorname{O}(\operatorname{CF}_2)_{n+2}\operatorname{OSO}_2\operatorname{F}\\ & & (\mathrm{I}), (\mathrm{II}), (\mathrm{II}), (\mathrm{II}), (\mathrm{II}), (\mathrm{II}) + \operatorname{MeOH} (\operatorname{excess}) \xrightarrow{\operatorname{KF}}_{-\operatorname{SO}_2\operatorname{F}_2}\operatorname{MeOOC}(\operatorname{CF}_2)_n \operatorname{COOMe}\\ & & (\mathrm{III}), (\mathrm{IV}) \\ n = 1 & (\mathrm{III}), 2 & (\mathrm{IV}). \end{array}$

N,N'-bis(ω -carboxyalkyl)diamides (V)-(VIII) and N,N'-bis(3-dimethylaminopropyl)diamide of tetrafluorosuccinic acid (IX) were obtained by acylation with the diesters (III) and (IV) of glycine, β -alanine, and γ -aminobutyric acid (GABA) and also N,N-dimethyl-1,3-propanediamine.

UDC 542.91:548.737:547.461.3'161

Institute of Physiologically Active Substances, Academy of Sciences of the USSR, Chernogolovka. Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 2, pp. 381-385, February, 1989. Original article submitted April 13, 1987.

$$(III), (IV) \xrightarrow{1) H_{9}N(CH_{2})_{m}COONa} (CF_{2})_{n} [CONH (CH_{2})_{m}COOH]_{2}$$

$$(V)-(VIII)$$

$$n = 1, \ m = 2 \ (V); \ n = 2, \ m = 1 \ (VI), \ m = 2 \ (VII), \ m = 3 \ (VIII).$$

$$(IV) \xrightarrow{H_{2}N(CH_{2})_{9}N(CH_{9})_{2}} (CF_{2})_{2} [CONH(CH_{2})_{3}N(CH_{3})_{2}]_{2}$$

$$(IX)$$

In order to unambiguously confirm the structures of the compounds obtained by us, the x-ray structural analysis (XSA) of the N,N'-bis(2-carboxyethyl)diamide of tetrafluorosuccinic acid (VI) was determined. The structure of (VI) from the XSA is shown in Fig. 1. The molecule (VI) is centrosymmetric with a crystallographic center of symmetry at (0, 0, 0), located in the middle of the C^2-C^2 bond. The bond lengths in (VI) are given in Fig. 1, the main bond angles are: $C^1NC^4 = 120.63(8)$, $0^1C^{1N} = 125.30(9)$, $0^1C^1C^2 = 119.72(8)$, $NC^1C^2 = 114.98(8)$, $F^{1-}C^2F^2 = 108.00(8)$, $F^1C^2C^1 = 110.49(7)$, $F^1C^2C^2 = 107.97(9)$, $F^2C^2C^1 = 108.63(7)$, $F^2C^2C^2 = 107.81$ (9), $C^1C^2C^2 = 113.77(9)$, $0^2C^{3O^3} = 125.4(1)$, $0^2C^3C^4 = 111.0(1)$, $0^3C^3C^4 = 123.5(1)$, $NC^4C^3 = 112.66(9)$, $H^1NC^1 = 122(1)$, $H^1NC^4 = 117(1)$, $H^2O^2C^3 = 104(2)^\circ$. The average C-F bond distance, 1.346(1) Å, coincides with that found in CH_2F_2 (1.344(4) Å [6]). The C^2-C^2 bond distance is slightly shorter than the average length of an ordinary $C(sp^3)-C(sp^3)$ bond, 1.541(3) Å [6]. The C^1-C^2 bond is lengthened, while the C^3-C^4 bond is shortened by comparison with the average length of an ordinary $(0)C(sp^2)-C(sp^3)$ bond, 1.516(5) Å [6]. The distribution of bond lengths in the peptide group $0^1=C^1-N$ shows the important π -delocalization in the double bond: $O^1-C^2-C^2$.

The conformation of (VI) is described by the torsion angles: $F^1C^2C^2F^1 = 180$, $F^2C^2C^2F^2 = 180$, $C^1C^2C^2C^1 = 180$, $F^1C^2C^2F^2 = 63.6$, $F^1C^2C^2C^1 = -57.0$, $F^2C^2C^2C^1 = 59.5$, $F^1C^2C^1N = -24.0$, $F^2-C^2C^1O^1 = 38.6$, $C^2C^2C^1O^1 = -81.5$, $C^2C^2C^1N = 97.7$, $O^1C^1NC^4 = -1.4$, $C^2C^1NC^4 = 179.6$, $C^1NC^4C^3 = -77.8$, $NC^4C^3O^2 = -179.3$, and $NC^4C^3O^3 = 0.8^\circ$. The position of substituents relative to the ordinary bond C^2-C^2 has a twisted conformation. Two planar fragments can be identified in the symmetrically independent half of (VI): 1) the plane of the peptide group, composed of atoms O^1 , N, C^1 , C^2 , C^4 , and H^1 ; and 2) the plane of the carboxyl group, which includes atoms O^2 , O^3 , C^3 , C^4 , N, and H^2 . The angle between these planes is 78°.

Three-centered (forked or bifurcated) hydrogen bonds occur in (VI): $C^2-F^1...H^1...O^1=C^1$, in which atom H¹ on N simultaneously participates in intramolecular H bonds $C^2-F^1...H^1-N$ and intermolecular H bonds N-H¹...O¹=C¹ (Fig. 1). Analogous three-centered H bonds were discussed and observed in the crystal structures of $O_2NCF_2CONHCH_2Ph$ and $O_2NCF_2CONHNHTOI$ [7].

Fig. 1. X-ray structure of the N,N'-bis(2-carboxyethyl)diamide of tetrafluorosuccinic acid (VI). The molecule has a center of symmetry in the middle of the C^2-C^2 bond. Nonhydrogen atoms are shown by thermal probability ellipsoids (P = 30%). The bond lengths, d, are given in Å, for the nonhydrogen atoms $\sigma(d) \approx$ 0.001-0.002 Å. The hydrogen bonds to H¹ are shown by dotted lines.

Compound	Yield,	Mp,°C	Empirical formula	Found/calculated, %			
				C	H	F	N
(V)	31,5	174-175	$C_9H_{12}F_2N_2O_6$	38,35	$\frac{4.11}{4.25}$	$\frac{13.42}{13.47}$	<u>9,90</u> 9,92
(VI)	35,1	215 (decomp.)	C8H8F4N2O6	<u>31.65</u> 31.59	$\frac{2,89}{2.63}$	$\frac{25.33}{25.00}$	<u>9,10</u> 9,21
(VII)	36,3	203-204	C ₁₀ H ₁₂ F ₄ N ₂ O ₆	$\frac{36.45}{36.14}$	$\frac{4,00}{3,61}$	$\frac{22.86}{22,89}$	$\frac{8,40}{8,43}$
(VIII)	32,8	183-184	C ₁₂ H ₁₆ F ₄ N ₂ O ₆	$\frac{38,35}{38.24}$	$\frac{4.11}{4.27}$	$\begin{array}{r} \underline{13,42} \\ \overline{13,59} \end{array}$	$\frac{9,90}{9,81}$
(IX)	72,6	59	C14H26F4N4O2	47.46	$\frac{7,24}{7,26}$	$\frac{21.26}{21,23}$	$\frac{15,25}{15,64}$

TABLE 1. Characteristics of Compounds (V)-(IX)

TABLE 2. Coordinates ($\times 10^4$, $\times 10^3$ for H) of the Independent Atoms in the Structure of (VI)

	X	Y	Z
ACOM	·		<u> </u>
F ⁴ F ² O ² O ³ N C ¹ C ² C ³ C ⁴ H ¹	$\begin{array}{c} 2085(2)\\ 3065(2)\\ -1557(2)\\ -3743(3)\\ 619(3)\\ -2056(2)\\ -1052(3)\\ 860(2)\\ -2053(3)\\ -3853(3)\\ -170(4) \end{array}$	$\begin{array}{c} -1762(1)\\ 2850(2)\\ 2176(2)\\ -2043(4)\\ -276(3)\\ -2453(2)\\ 71(2)\\ 233(2)\\ -1581(3)\\ -2888(3)\\ -385(4)\end{array}$	$\begin{array}{c} 502.4 (5) \\ 574.8 (6) \\ 1778.4 (7) \\ 4489.6 (8) \\ 3745.1 (8) \\ 1837.1 (7) \\ 1453.7 (7) \\ 513.5 (7) \\ 3704.9 (9) \\ 2720.7 (8) \\ 158 (1) \\ \end{array}$
H ² H ³ H ⁴	$ \begin{array}{c c} -239(6) \\ -520(4) \\ -474(4) \end{array} $	-125(6) -206(5) -484(5)	268(2) 279(2)

Intermolecular H bonds N-H¹...0¹=C¹ [X, Y - 1, Z] (distance N...0¹, 2.806(1) Å, angle N-H¹...0¹, 147(2)°) in the crystal structure of (VI) form infinite chains along the b axis. Intramolecular H bonds $C^2-F^1...H^1-N$ in (VI) are unusual, little studied H bonds, the existence of which in similar compounds was shown earlier by spectroscopic methods [8-10]. In the crystal of (VI), there are stable intermolecular H bonds of the $O^2-H^2...O^3$ type [-X, -Y, 1 - Z] (distance $O^2...O^3$, 2.678(1), H²...O³, 1.76(3) Å, angle $O^2-H^2...O^3$, 166(3)°), which join molecules of (VI) in infinite chains along the c axis in the following manner.

EXPERIMENTAL

<u>1,3-Bis(fluorosulfonyloxy)hexafluoropropane (I)</u>. To a mixture of 290 g (2.15 moles) of $ClOSO_2F$, 50 g HSO₃F, and 16 g SbF₅ was added with stirring 221 g (1 mole) of 1,3-dibromo-hexafluoropropane. Stirring was continued for 6 h at 50-60°C. It was poured onto crushed ice, the organic layer was separated, washed with water (3 × 200 ml), and dried over MgSO₄. Fractionation gave 272 g (78%) of (I), bp 114-115°C, d_{μ}^{20} 1.794, n_D^{20} 1.3000 (see [11]).

Under analogous conditions from 1,4- dibromooctafluorobutane was obtained (II) (yield 85%), bp 137-138°C, d_4^{20} 1.787, n_D^{20} 1.3105 (see [12]).

<u>Dimethyl Ester of Difluoromalonic Acid (III)</u>. To a suspension of 90 g (1.55 moles) of dried KF in 500 ml absolute MeOH was added with stirring 229 g (0.66 mole) of (I), followed by refluxing for 10 h. The precipitate of KF was filtered, the filtrate was poured into 1 liter of 3% H₂SO₄, the organic layer was separated, and the aqueous layer was extracted with Freon-113. The combined extracts were washed with 10% soda solution, water, and dried over MgSO₄. Fractionation gave 81.2 g (73.2%) of (III), bp 167-169°C, d²⁰₄ 1.310, n²⁰_D 1.3719 (see [13]).

Under analogous conditions from (II) was obtained (IV) (yield 76.6%), bp 172-174°C, d_4^{20} 1.463, n_D^{20} 1.3550 (see [13]).

<u>N,N'-Bis(ω -carboxyalkyl)diamides of Perfluorodicarboxylic Acids (V)-(VIII)</u>. To a solution of 0.1 mole of the Na salt of glycine (β -alanine, GABA) in 40 ml water was added 0.05 mole of the ester (III) or (IV), followed by stirring at 40-60°C for 1 h until the disappearance of the ester layer. The reaction mixture was poured into 50 ml of 30% H₂SO₄ and cooled to -15°C. The precipitate which formed was quickly filtered, washed with ice water, Freon-113, and dried over P₂O₅. The precipitate was dissolved in absolute Et₂O to remove the Na₂-SO₄ impurity. After removal of solvent, the residue was recrystallized from water. The characterisitcs of compounds (V)-(VIII) are given in Table 1.

<u>N,N'-Bis(3-dimethylaminopropyl)diamide of Tetrafluorosuccinic Acid (IX)</u>. To 21.8 g (0.1 mole) of (IV) was added 26 g (0.26 mole) of N,N-dimethyl-1,3-propandiamine, followed by stirring for 2 h at 60°C. Fractionation gave 26 g (72.6%) of (IX), bp 180-185°C (1 mm) (see Table 1).

<u>X-Ray Structure Analysis of (VI)</u>. XSA was carried out on an Enraf-Nonius CAD4-LSI11/ 02-PDP11/23 automatic diffractometer system (MoK_{α} radiation, graphite monochromator). Colorless, transparent crystals of (VI) are triclinic: C₈H₈F₄N₂O₆, M = 304.16; a = 4.891(2), b = 5.043(3), c = 13.126(3), α = 95.24(4), β = 90.20(2), γ = 112.71(5)°, V = 297.1(5) Å³, Z = 1, d_{calc} = 1.700 g/cm³, μ (MoK_{α}) = 1.72 cm⁻¹, and space group PI. The intensities of 2373 reflections (ω /20 scanning, 20 ≤ 65°) were measured in reciprocal space; 1588 independent observed reflections with I ≥ 3σ(I) were used in the final refinement. The crystal structure was solved by direct methods and refined by anisotropic (isotropic for H atoms) full matrix least squares methods (LSM) to R = 5.06 and R_w = 6.83%. The final atomic coordinates are given in Table 2. In the final difference Fourier synthesis, the majority of remaining electron density peaks ($\Delta \rho < 0.55 e^{A^{-3}}$) were located in the middle of covalent bonds. The weighting scheme for reflections in LSM (coefficient of the weighting scheme p = 0.085) was described in [7]. All x-ray structural calculations were done on minicomputer PDP 11/23 using the SDP-PLUS programs of Enraf-Nonius.

CONCLUSIONS

1. New N-substituted diamides of difluoromalonic and tetrafluorosuccinic acids were synthesized.

2. The molecular and crystal structure of the N,N'-bis(2-carboxyethyl)diamide of tetrafluorosuccinic acid was determined by x-ray structural analysis.

LITERATURE CITED

- 1. V. F. Cherstkov, S. R. Sterlin, A. S. German, et al., Izv. Akad. Nauk SSSR, Ser. Khim., 681 (1983).
- G. Siegemund and W. Schwertfeder, FRG Patent No. 3,128,119 (1983), R. Zh. Khim., 3H83 (1983);
- 3. A. V. Fokin, A. I. Rapkin, A. S. Tatarinov, et al., Izv. Akad. Nauk SSSR, Ser. Khim., 891 (1986).
- 4. A. V. Fokin, Yu. N. Studnev, A. I. Rapkin, et al., Izv. Akad. Nauk SSSR, Ser. Khim., 1635 (1985).
- 5. A. V. Fokin, Yu. N. Studnev, A. I. Rapkin, et al., Izv. Akad. Nauk SSSR, Ser. Khim., 1669 (1985).
- 6. International Tables for X-ray Crystallography, Vol. 3, Kynoch Press, Birmingham, England (1968), pp. 275-276.
- 7. A. N. Chekhlov, V. K. Brel', and I. V. Martynov, Izv. Akad. Nauk SSSR, Ser. Khim., 2446 (1986).
- 8. R. A. Nyquist, Spectrochim. Acta, <u>19</u>, 509 (1963).
- 9. P. J. Krueger and D. W. Smith, Can. J. Chem., <u>45</u>, 1611 (1967).
- 10. R. L. Jones, Spectrochim. Acta, Pt. A, <u>30</u>, 1329 (1974).
- 11. C. J. Schack and K. O. Christe, J. Fluor. Chem., 16, 63 (1980).
- 12. H. Millauer, FRG Patent No. 3,128,118 (1983), R. Zh. Khim., 1H83 (1984).
- 13. I. L. Knunyants, Li Chzhi-yuan', and V. V. Shokina, Usp. Khim., <u>32</u>, 1052 (1963).