

Tetrahedron Vol. 51, No. 40, pp. 10875-10882, 1995 Copyright © 1995 Elsevier Science Ltd Printed in Great Britain. All rights reserved 0040-4020/95 \$9.50+0.00

0040-4020(95)00664-8

# Ring Enlargement by Alkylated 3-Hydroxybutyrates: A Synthesis of (12S, 13R)-(–)-12-Methyl-13-tetradecanolide<sup>1</sup>

## Philip Kraft and Werner Tochtermann\*

Institut für Organische Chemie der Universität Kiel, Olshausenstraße 40, D-24098 Kiel, Germany

Keywords: Fráter alkylation; Macrolides; Ring enlargement; Odor and structure; Circular dichroism.

Abstract: TBS-protected iodo alkohols 6 were prepared via Fráter alkylation and applied in the synthesis of optically active macrolides5 and 10. By ring enlargement of cyclodecanone (7) the superposition molecule 5 of two macrocyclic odorants was synthesized and a conformationally fixed tricyclic macrolide11 constructed.

Generating the dianion A by treatment with two equivalents of LDA effectively locks methyl (3R)-(-)-3hydroxybutyrate (1) in an eclipsed conformation, where the lithium atoms are chelated with the lone electron pairs of the oxygens.<sup>2</sup> An electrophile approaching from the sterically less hindered side gives the *anti* diastereomer with high selectivity (Scheme 1). As a result, these Fráter alkylations<sup>3,4</sup> offer the opportunity of introducing additional substituents diastereoselectively in chiral building blocks derived from  $\beta$ -hydroxy esters. For instance, Mori *et al.* applied this strategy in their enantioselective synthesis of the potent antiulcerogen (+)-cassiol.<sup>5</sup>



Scheme 1. Fráter alkylation of methyl (3R)-(-)-3-hydroxybutyrate (1)

We became interested in the methylated 3-hydroxybutyrate 2a as chiral building block for the synthesis of (12S, 13R)-(-)-12-methyl-13-tetradecanolide (5), which we regarded as a superposition of (12S)-(-)-12-methyl-13-tridecanolide (3)<sup>6</sup> and (13R)-(-)-13-tetradecanolide (4),<sup>7</sup> macrocyclic odorants isolated from essential oils of *Umbelliferae*. (12S)-(-)-12-Methyl-13-tridecanolide (3) possesses a pronounced musk odor that differs from that of the enantiomer by its animalic character and camphoraceous aspects. In contrast, the musk note of (13R)-(-)-13-tetradecanolide (4) is weaker and woody aspects dominate. In our preceding paper<sup>7</sup> we attributed this effect to a steric hindrance of the 13-methyl group of 4 with the receptor for macrocyclic musk odorants. To support this suggestion, we had the idea of restraining the musk note of 3 by introducing the (13R)-methyl group of 4. Thus, we wanted to synthesize a macrocyclic odorant that smells animalic but not musk-like (Scheme 2).



Scheme 2. (12S)-(-)-12-Methyl-13-tridecanolide (3), (13R)-(-)-13-tetradecanolide (4), and the superposition molecule (12S,13R)-(-)-12-methyl-13-tetradecanolide (5) with contributions to the Cotton effect assigned

Replacing the carcinogenic hexamethylphosphoric triamide of the original procedure<sup>3</sup> by 1,3-dimethyl-3,4,5,6-tetrahydro-2-(1*H*)-pyrimidinone (DMPU),<sup>8</sup>(3*R*)-(-)-3-hydroxybutyrate (1) was methylated in 69% yield with 94% de (<sup>1</sup>H NMR of **5**) to give **2a**. Protection of the alkylated hydroxy ester **2a** by the *tert*-butyldimethylsilyl group (TBS), reduction with DIBAH, and iodination of the resulting hydroxy function with triphenylphosphine, imidazole (ImH) and iodine furnished the chiral building block **6a** in 54% overall yield. According to our standard sequence<sup>7</sup> cyclodecanone (**7**) was deprotonated by LDA / DMPU and alkylated with **6a** in 64% yield. Treatment of the alkylation product **8a** with Amberlyst<sup>®</sup> 15 in dichloromethane provided the cyclic enol ether **9a** in 71% yield (Scheme 3).

Due to competitive reactions initiated by oxidation of the C-H bond of the stereocenter cleavage of the enol ether double bond of 12-methyl-11-oxabicyclo[8.4.0]tetradec-1(10)-ene had been unsatisfactory.<sup>7</sup> Fortunately, the 12,13-dimethyl compound **9a** was less sensitive, and pyridinium chlorochromate (PCC) on Celite<sup>®</sup> as mild and selective reagent<sup>9</sup> afforded oxo lactone **10a** in 59% yield. The synthesis of **5** was completed by reduction of the tosylhydrazone of **10a** with bis(triphenylphosphine)copper(I) tetrahydridoborate,<sup>10</sup> which proceeded in 51% without isolation of the tosylhydrazone.

Superposition molecule 5 indeed completely lacks the musk note of 3, although the animalic character and the camphoraceous aspects of 3 are markedly present. Instead of the musk odor 5 possesses a woody cedar-like note reminiscent of compound 4. The overall impression is powdery, animalic, cedarwood-like, and slightly camphoraceous.

This certainly confirms our supposition, but the Cotton effect of 5 expected to be negative like that of  $4^7$  was found to be positive ( $\Delta\epsilon + 0.14$ ). By comparison of macrolides 3, 4 and 5 the contribution of the 12-methyl group was derived as  $\Delta\epsilon + 0.40$ . This Cotton effect cancels that of the 13-methyl group ( $\Delta\epsilon - 0.40$ ) to give the value for the ring atoms ( $\Delta\epsilon + 0.14$ ). By virtue of the X-ray crystal structure of 13-tridecanolide<sup>11</sup> and the observed chiroptical properties,<sup>7</sup> we assumed the shown conformation of 3 and 4 (Scheme 2) to be favored. In this conformation (Scheme 2) the 12-methyl group of 5 lies on a nodal plane and should not make any contribution



Scheme 3. Stereoselective syntheses of macrolides 5, 10a and 10b by ring enlargement of cyclodecanone (7) with chiral building blocks 6



Scheme 4. Diastereoselective dihydroxylation of 10b and subsequent intramolecular ketalization to 11

P. KRAFT and W. TOCHTERMANN

to the Cotton effect; either the quadrant rule<sup>12</sup> fails, or the contribution stems from an additional conformer. For clarification, we planned to fix C-12 in *gauche* conformation by construction of a tricyclic skeleton.

Intramolecular ketalization is an efficient access to molecules with fixed geometry like the aggregation pheromones (-)-frontalin<sup>13</sup> and (+)-*exo*-brevicomin.<sup>14</sup> To build up a dioxabicyclo[3.2.1] octane system we wanted to introduce an allyl group as synthetic equivalent for a 2,3-dihydroxypropyl fragment. Fráter alkylation of 1 by allyl bromide gave 2b as starting material in 71% yield with 97% de (<sup>1</sup>H NMR of 9b). Following the same sequence, we converted 2b into 6b in 52% overall yield. Alkylation of cyclodecanone with the chiral building block 6b gave in 67% yield 8b that cyclized in 89% yield to 9b upon treatment with Amberlyst<sup>®</sup> 15 in dichloromethane.

The enol ether double bond of **9b** was cleaved chemoselectively in the presence of the allyl group by PCC/ Celite<sup>®</sup> to provide oxo lactone **10b** in 65% yield. Stoichiometric osmylation<sup>15</sup> of **10b** in ether / pyridine (py) and subsequent intramolecular ketalization catalyzed by Amberlyst<sup>®</sup> 15 afforded the tricyclic macrolide **11** with 94% de (<sup>1</sup>H NMR of **11**) in 28% isolated yield (Scheme 4). The configuration of **11** was unambiguously established by the presence of a NOE between one methylene proton on C-15 ( $\delta$  3.86) and the methine on C-1 ( $\delta$  2.10). As predicted by the quadrant rule,<sup>12</sup> the observed Cotton effect of **11** was negative ( $\Delta \varepsilon$  -0.16); accordingly, the contribution of the 12-methyl group of **5** is probably due to an additional conformer.<sup>11</sup>

The stereochemical course of this diastereoselective dihydroxylation was not influenced by asymmetric ligands, *i.e.*  $(DHQD)_2$ - or  $(DHQ)_2$ -PHAL.<sup>16</sup> Diastereoselective hydroxylation guided by a remote sulfoxide group<sup>17</sup> or sulfoximine group<sup>18</sup> had already been observed, and Weigel *et al.*<sup>19</sup> had suggested that a carbonyl group may disrupt asymmetric dihydroxylation. Therefore, osmate(VI) ester complex **B** (Scheme 4) might explain the observed diastereoselectivity of the dihydroxylation of **10b**.

In summary, the application of alkylated chiral building blocks **6** in our ring enlargement sequence<sup>6,7</sup> represents a facile and highly stereoselective method for the synthesis of  $(\omega, \omega-1)$ -disubstituted macrolides like **5**, **10a** and **10b**. A quaternary stereogenic center at carbon  $(\omega-1)$  should be accessible by repeated Fráter alkylation.<sup>5</sup> Only recently, Yamamoto *et al.* synthesized  $(\omega, \omega-2)$ -disubstituted macrolides by ozonolysis of stereospecifically annulated cyclic enol ethers.<sup>20</sup> Both strategies of introducing two stereocenters by ring expansion broaden the synthetic access to medium and large ring lactones.<sup>21</sup>

## **EXPERIMENTAL**

IR spectra were recorded on a Perkin-Elmer Paragon 1000 FTIR-spectrometer.  $^{1}H/^{13}C$  NMR spectra (reference: TMS int) were taken in CDCl<sub>3</sub> on a Bruker AC 200 P and a Bruker AM 300, respectively. EI (70 eV) and CI (<sup>1</sup>BuH) mass spectra were obtained on a Finnigan-MAT 8230 spectrometer. Column chromatography was performed on Baker Silicagel 30–60 µm and analytical TLC on Macherey-Nagel SIL G/UV<sub>254</sub> plates. Melting points were determined on a Büchi 510 apparatus and are uncorrected. Elemental analyses were performed by the Mikroanalytisches Laboratorium Ilse Beetz, D-96301 Kronach.

# Fráter Alkylation of (3R)-(-)-3-Hydroxybutyrate (1)

General Procedure: To a soln of LDA [prepared under argon atmosphere by addition of *n*-butyllithium (124 mL of 1.6 M in *n*-hexane, 198 mmol) at -78 °C to a soln of diisopropylamine (26.0 mL, 198 mmol) in anhydrous THF (200 mL) and stirring at 0 °C for 30 min] cooled to -78 °C was added methyl (3*R*)-(-)-3-hydroxybutyrate (10 mL, 89.3 mmol; 1) within 10 min. When the reaction temp dropped back to -78 °C the halide (98 mmol) and DMPU (30 mL, 248 mmol) was introduced. After stirring at -78 °C for another 15 min and at 0 °C for 45 min, the reaction mixture was poured into cold sat NH<sub>4</sub>Cl aq (200 mL) and the aqueous layer extracted with Et<sub>2</sub>O (3 × 200 mL). The combined organic extracts were dried with Na<sub>2</sub>SO<sub>4</sub> and concentrated to leave a residue, which was purified by distillation or column chromatography to give the alkylated  $\beta$ -hydroxy esters as clear, colorless liquids.

10878

*Methyl* (2*R*,3*R*)-(-)-3-*hydroxy*-2-*methyl*-butyrate (2a). Using methyl iodide, scale 44.7 mmol, yield 69% (4.09 g), bp 77–78 °C/10 Torr;  $[\alpha]_D^{20}$ -32.9,  $[\alpha]_{546}^{20}$ -38.9 (c 1.8, CHCl<sub>3</sub>); for spectroscopic data of the corresponding ethyl ester, see ref.<sup>3</sup>

*Methyl* (2*R*, 1'*R*)-(-)-2-(1'-hydroxyethyl)-allyl-acetate (2b). Using allyl bromide, scale 89.3 mmol, yield 71% (9.99 g), h $R_f$  40 (*n*-pentane:Et<sub>2</sub>O, 1:1);  $[\alpha]_D^{22}$ -8.7,  $[\alpha]_{546}^{22}$ -10.0 (*c* 4.0, CHCl<sub>3</sub>); for spectroscopic data of the corresponding ethyl ester, see ref.<sup>3</sup>

## Preparation of the Chiral Building Blocks 6

#### General Procedure: See ref.<sup>7</sup>

(2R,3R)-(-)-(tert-Butyldimethyl)-(4-iodo-3-methylbut-2-oxy)-silane (6a). Scale 30.3 mmol, overall yield 54% (5.41 g), hR<sub>f</sub> 64 (*n*-pentane); IR (film, cm<sup>-1</sup>)  $\tilde{v}$  835 (s, v Si-OC), 774 (s, v O-Si-CH<sub>3</sub>); <sup>1</sup>H NMR (CDCl<sub>3</sub>, ppm)  $\delta$  0.07 / 0.09 (2s, 6H, SiMe<sub>2</sub>), 0.89 (s, 9H, CMe<sub>3</sub>), 0.96 (d, J = 6.8 Hz, 3H, 3-Me), 1.12 (d, J = 6.2 Hz, 3H, 1-H<sub>3</sub>), 1.48 (qddd, J = 6.8, 6.4, 6.2 and 4.5 Hz, 1H, 3-H), 3.28 (dd, J = 9.5 and 6.4 Hz, 1H, 4-H<sub>B</sub>, part of an AB system), 3.29 (dd, J = 9.5 and 4.5 Hz, 1H, 4-H<sub>A</sub>, part of an AB system), 3.65 (qd, J = 6.2 and 6.2 Hz, 1H, 2-H);<sup>13</sup>C NMR (CDCl<sub>3</sub>, ppm)  $\delta$  -4.62 / -4.10 (2q, SiMe<sub>2</sub>), 14.27 (t, C-4), 17.11 (q, 3-Me), 18.02 (s, CMe<sub>3</sub>), 20.52 (q, C-1), 25.92 (q, CMe<sub>3</sub>), 42.60 (d, C-3), 71.31 (d, C-2); MS (CI. %) *m/z* 329 (100) [ M<sup>⊕</sup> + H ], 313 (2) [M<sup>⊕</sup> - CH<sub>3</sub>], 271 (17) [M<sup>⊕</sup> - C<sub>4</sub>H<sub>9</sub>], 201 (51) [M<sup>⊕</sup> - I]; [ $\alpha$ ]<sub>20</sub><sup>20</sup> -34.5, [ $\alpha$ ]<sub>240</sub><sup>20</sup> -40.6 (c 0.9, CHCl<sub>3</sub>).

(2R,3R)-(-)-(*tert-Butyldimethyl*)-(3-[*iodomethyl*]-*hex-5-en-2-oxy*)-*silane* (**6b**). Scale 45.0 mmol, overall yield 52% (8.24 g), hR<sub>f</sub> 59 (*n*-pentane); IR (film, cm<sup>-1</sup>)  $\bar{\nu}$  835 (s,  $\nu$  Si-OC), 775 (s,  $\nu$  O-Si-CH<sub>3</sub>), 990/916 (m,  $\delta$  =C-H oop), 1640 (w,  $\nu$  C=C), 3076 (w,  $\nu$  =C-H);<sup>1</sup>H NMR (CDCl<sub>3</sub>, ppm)  $\delta$  0.08 / 0.10 (2s, 6H, SiMe<sub>2</sub>), 0.89 (s, 9H, CMe<sub>3</sub>), 1.14 (d, *J* = 6.2 Hz, 3H, 1-H<sub>3</sub>), 1.37 (dddt, *J* = 8.4, 6.0, 5.2 and 5.2 Hz, 1H, 3-H), 1.99 (dddt, *J* = 14.2, 8.7, 7.7 and 1.2 Hz, 1H, 4-H<sub>b</sub>), 2.27 (dddt, *J* = 14.2, 6.5, 5.0 and 1.2 Hz, 1H, 4-H<sub>a</sub>), 3.23 (dd, *J* = 9.7 and 5.2 Hz, 1H, CH<sub>b</sub>I), 3.38 (dd, *J* = 9.7 and 5.2 Hz, 1H, CH<sub>a</sub>I), 3.80 (qd, *J* = 6.2 and 6.0 Hz, 1H, 2-H), 5.07 (ddt, *J* = 10.1, 1.7 and 1.2 Hz, 1H, 6-H<sub>cis</sub>), 5.13 (ddt, *J* = 17.0, 1.7 and 1.2 Hz, 1H, 6-H<sub>trans</sub>), 5.70 (dddd, *J* = 17.0, 10.1, 7.8 and 6.5 Hz, 1H, 5-H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, ppm)  $\delta$  -4.58 / -4.06 (q, SiMe<sub>2</sub>), 11.22 (t, CH<sub>2</sub>I), 17.91 (s, CMe<sub>3</sub>), 20.48 (q, C-1), 25.88 (q, CMe<sub>3</sub>), 34.45 (t, C-4), 47.03 (d, C-3), 69.57 (d, C-2), 116.99 (t, C-6), 135.91 (d, C-5); MS (CI, %) *m/z* 355 (55) [M<sup>⊕</sup> + H], 339 (10) [M<sup>⊕</sup> - CH<sub>3</sub>], 297 (69) [M<sup>⊕</sup> - C<sub>4</sub>H<sub>9</sub>], 227 (43) [M<sup>⊕</sup> - I], 95 (100) [C<sub>7</sub>H<sub>11</sub><sup>⊕</sup>]; [ $\alpha$ ]<sup>235</sup><sub>D</sub> -29.5, [ $\alpha$ ]<sup>233</sup><sub>546</sub> -35.1 (*c* 2.6, CHCl<sub>3</sub>).

## Alkylation of Cyclodecanone (7) by Chiral Building Blocks 6

# General Procedure: See ref.<sup>7</sup>

 $(2RS, 2'S, 3'R)-2-[3'-(tert-Butyldimethylsiloxy)-2', 3'-dimethylprop-1'-yl]cyclodecan-1-one (8a). Scale 15.0 mmol, yield 64% (3.41 g), hRf 20 (n-pentane:Et<sub>2</sub>O, 50:1); IR (film, cm<sup>-1</sup>) <math>\bar{\nu}$  836 (s, v Si-OC), 1703 (s, v C=O), 774 (s, v O-Si-CH<sub>3</sub>); <sup>1</sup>H NMR (CDCl<sub>3</sub>, ppm)  $\delta$  0.02 / 0.03 (2s, 6H, SiMe<sub>2</sub>), 0.87 (s, 9H, CMe<sub>3</sub>), 0.84 / 0.87 (2d, J = 6.7 / 6.5 Hz, 3H, 2'-Me), 1.02 / 1.03 (2d, J = 6.3 / 6.2 Hz, 3H, 4'-H<sub>3</sub>), 1.19–1.87 (m, 17H, 1'-H<sub>2</sub>, 2'-H and 3-H<sub>2</sub>-9-H<sub>2</sub>), 2.41– 2.77 (m, 3H, 2-H and 10-H<sub>2</sub>), 3.58 / 3.63 (2qd, J = 6.3 / 6.2 and 4.5 / 4.6 Hz, 1H, 3'-H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, ppm)  $\delta$  -4.73 / -4.32 (q, 2C, SiMe<sub>2</sub>), 15.02 / 15.08 (q, 1C, 2'-Me), 18.08 (s, 1C, CMe<sub>3</sub>), 19.60 / 19.70 (q, 1C, C-4'), 23.18 / 23.37 (t, 1C, C-9), 24.04 / 24.60 / 24.68 / 24.72 / 24.89 / 24.98 (t, 3C, C-4,-6,-7), 25.19 / 25.24 (t, 2C, C-5,-8), 25.91 (q, 3C, CMe<sub>3</sub>), 29.82 / 32.10 (t, 1C, C-3), 36.18 / 37.00 (t, 1C, C-1'), 37.94 / 38.16 (d, 1C, C-2'), 40.37 (t, 1C, C-10), 50.07 / 51.27 (d, 1C, C-2), 71.98 / 72.15 (d, 1C, C-3'), 216.97 (s, 1C, C-1); MS (CI, %) m/z 355 (100) [M<sup>©</sup> + H], 297 (13) [M<sup>©</sup> - C<sub>4</sub>H<sub>9</sub>], 223 (30) [M<sup>©</sup> - C<sub>6</sub>H<sub>15</sub>OSi].

(2RS, 2'S, 1''R)-2- $\{2'-[1''-(tert-Butyldimethylsiloxy)ethyl]$ -pent-4'-en-1'-yl]cyclodecan-1-one (**8b**). Scale 20.0 mmol, yield 67% (5.10 g), hR<sub>f</sub> 17 (*n*-pentane:Et<sub>2</sub>O, 50:1); IR (film, cm<sup>-1</sup>)  $\bar{\nu}$  836 (s,  $\nu$  Si-OC), 775 (s,  $\nu$  O-Si-CH<sub>3</sub>), 1703 (s,  $\nu$  C=O), 993 / 1004 / 910 (m,  $\delta$  =C-H oop), 1640 (m,  $\nu$  C=C), 3075 (w,  $\nu$  =C-H); <sup>1</sup>H NMR (CDCl<sub>3</sub>, ppm)  $\delta$  0.02 / 0.03 / 0.04 (3s, 6H, SiMe<sub>2</sub>), 0.87 / 0.88 (2s, 9H, CMe<sub>3</sub>), 1.04 / 1.05 (2d, J = 6.3 / 6.2 Hz, 3H, 2"-H<sub>3</sub>), 1.15–2.00 (m, 18H, 1'-H<sub>2</sub>, 2'-H, 3'-H<sub>b</sub> and 3-H<sub>2</sub>–9-H<sub>2</sub>), 2.27 (m<sub>c</sub>, 1H, 3'-H<sub>a</sub>), 2.52 (m<sub>c</sub>, 2H, 10-H<sub>2</sub>), 2.73 / 2.75 (2ddd, J = 10.2 / 10.0, 5.7 / 5.9 and 3.7 Hz, 1H, 2-H), 3.81 / 3.82 (2dq, J = 12.6 and 6.2 / 6.3 Hz, 1H, 1"-H), 5.01 (m<sub>c</sub>, 2H, 5'-H<sub>2</sub>), 5.74 (ddt, J = 17.1, 10.1 and 7.2 Hz, 1H, 4'-H) / 5.75 (dddd, J = 17.4, 9.7, 7.8 and 6.7 Hz, 1H, 4'-H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, ppm)  $\delta$  -4.83 / -4.79 / -4.31 (q, 2C, SiMe<sub>2</sub>), 17.92 / 17.95 (s, 1C, CMe<sub>3</sub>),

 $19.92 / 19.95 (q, 1C, C-2"), 23.09 / 23.21 (t, 1C, C-9), 24.11 / 24.26 / 24.64 / 24.64 / 24.92 / 24.95 / 25.08 / 25.36 (t, 4C, C-4-C-7), 25.80 (q, 3C, CMe_3), 30.44 (t, 1C, C-8), 31.34 (t, 1C, C-3"), 33.69 / 33.88 (t, 1C, C-3), 34.38 / 34.56 (t, 1C, C-1"), 40.16 / 40.43 (t, 1C, C-10), 42.81 / 43.00 (d, 1C, C-2"), 50.38 / 50.85 (d, 1C, C-2), 69.14 / 69.50 (d, 1C, C-1"), 115.70 (t, 1C, C-5"), 137.58 (d, 1C, C-4"), 216.40 / 216.50 (s, 1C, C-1); MS (CI, %)$ *m*/z 381 (36) [M<sup>⊕</sup> + H], 365 (3) [M<sup>⊕</sup> - CH<sub>3</sub>], 323 (27) [M<sup>⊕</sup> - C<sub>4</sub>H<sub>9</sub>], 249 (100) [M<sup>⊕</sup> - C<sub>6</sub>H<sub>15</sub>OSi]; Anal calcd for C<sub>23</sub>H<sub>44</sub>O<sub>2</sub>Si (380.7), C 72.57, H 11.65; found C 72.65, H 11.68.

## **Cyclization of Alkylation Products 8 to Enol Ethers 9**

#### General Procedure: See ref.<sup>7</sup>

(12R, 13S)-(+)-12, 13-Dimethyl-11-oxabicyclo[8.4.0]-tetradec-1(10)-ene (9a). Scale 9.00 mmol, yield 71% (1.42 g), hR<sub>f</sub> 16 (*n*-pentane); IR (film, cm<sup>-1</sup>)  $\bar{\nu}$  1243 (s,  $\nu$  C-O), 1674 (s,  $\nu$  C=CO); <sup>1</sup>H NMR (CDCl<sub>3</sub>, ppm)  $\delta$  0.93 (d, J = 6.4 Hz, 3H, 13-Me), 1.24 (d, J = 6.2 Hz, 3H, 12-Me), 1.31–1.72 (m, 14H, 3-H<sub>2</sub>–8-H<sub>2</sub>, 13-H and 14-H<sub>b</sub>), including 1.58 (m<sub>c</sub>, 1H, 13-H) and 1.63 (m<sub>c</sub>, 1H, 14-H<sub>b</sub>), 1.83 (m<sub>c</sub>, 1H, 14-H<sub>a</sub>), 1.97–2.23 (m, 2H, 2-H<sub>2</sub>), 2.23–2.44 (m, 2H, 9-H<sub>2</sub>), 3.47 (dq, J = 9.0 and 6.2 Hz, 1H, 12-H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, ppm)  $\delta$  17.89 (t, C-14), 19.13 (q, 12-Me), 20.17 / 20.85 (t, C-3,-8), 25.05 / 25.17 (t, C-5,-6), 26.31 / 26.55 (t, C-4,-7), 27.40 / 29.51 (t, C-2,-9), 32.87 (d, C-13), 33.52 (q, 13-Me), 76.03 (d, C-12), 105.54 (s, C-1), 147.20 (s, C-10); MS (EI, %) m/z 222 (42) [M<sup>⊕</sup>], 193 (32) [M<sup>⊕</sup> - C<sub>2</sub>H<sub>5</sub>], 179 (100) [M<sup>⊕</sup> - C<sub>2</sub>H<sub>3</sub>O], 95 (45) [C<sub>7</sub>H<sub>11</sub><sup>⊕</sup>]; [ $\alpha$ ]<sub>18</sub><sup>18</sup>+79.4, [ $\alpha$ ]<sub>546</sub><sup>18</sup>+93.8 (c 1.2, CHCl<sub>3</sub>); Anal calcd for C<sub>15</sub>H<sub>26</sub>O (222.4), C 81.02, H 11.79; found C 81.07, H 11.82.

(12R,13S)-(+)-13-Allyl-12-methyl-11-oxabicyclo[8.4.0]-tetradec-1(10)-ene (**9b**). Scale 11.8 mmol, yield 89% (2.61 g), hR<sub>f</sub> 21 (*n*-pentane); IR (film, cm<sup>-1</sup>)  $\tilde{v}$  1245 (s, v C-O), 912 / 994 (s,  $\delta =$ C-H oop), 1674 (m, v C=CO), 1640 (w, v C=C), 3074 (w, v =C-H); <sup>1</sup>H NMR (CDCl<sub>3</sub>, ppm)  $\delta$  1.26 (d, J = 6.3 Hz, 3H, 12-Me), 1.34 – 1.72 (m, 14H, 3-H<sub>2</sub>–8-H<sub>2</sub>, 13-H and 14-H<sub>b</sub>), 1.82–2.34 (m, 7H, 1<sup>-</sup>,-2-,9-H<sub>2</sub> and 14-H<sub>a</sub>), 3.65 (dq, J = 6.9 and 6.3 Hz, 1H, 12-H), 5.02 (ddt, J = 10.2, 2.6 and 1.1 Hz, 1H, 3'-H<sub>cis</sub>), 5.05 (ddt, J = 16.6, 2.6 and 1.1 Hz, 1H, 3'-H<sub>trans</sub>), 5.79 (dddd, J = 16.6, 10.2, 7.7 and 6.5 Hz, 1H, 2'-H); minor diastereomer  $\delta$  1.16 (12-Me, 1.5%); <sup>13</sup>C NMR (CDCl<sub>3</sub>, ppm)  $\delta$  19.19 (q, 12-Me), 20.25 / 20.86 (t, C-3,-8), 25.06 / 25.21 (t, C-5,-6), 26.27 / 26.55 (t, C-4,-7), 27.46 (t, C-2), 28.83 (t, C-14), 29.64 (t, C-9), 36.89 (t, C-1'), 37.80 (d, C-13), 73.96 (d, C-12), 104.88 (s, C-1), 116.30 (t, C-3'), 136.30 (d, C-2'), 146.57 (s, C-10); MS (EI, %) *m/z* 248 (55) [M<sup>⊕</sup>], 219 (25) [M<sup>⊕</sup> - C<sub>2</sub>H<sub>5</sub>], 205 (100) [M<sup>⊕</sup> - C<sub>3</sub>H<sub>7</sub>], 95 (84) [C<sub>7</sub>H<sub>11</sub><sup>⊕</sup>];  $[\alpha]_{2^6}^{2^6} + 72.0, [\alpha]_{3^{46}}^{2^6} + 85.1 (c 2.7, CHCl<sub>3</sub>); Anal calcd for C<sub>17</sub>H<sub>28</sub>O (248.4), C 82.20, H 11.36; found C 82.12, H 11.36.$ 

## **Oxidative Cleavage of the Cyclic Enol Ethers 9**

#### General Procedure: See ref.<sup>7</sup>

(12S,13R)-(-)-12-Methyl-10-oxo-13-tetradecanolide (10a). Scale 3.84 mmol, yield 59% (575 mg), hR<sub>f</sub> 48 (*n*-pentane:Et<sub>2</sub>O, 4:1), mp 44.0–44.5 °C; IR (KBr, cm<sup>-1</sup>)  $\bar{\nu}$  1718 (s,  $\nu$  OC=O),1703 (s,  $\nu$  C=O), 1260 (s,  $\nu_{as}$  C-CO-O); <sup>1</sup>H NMR (CDCl<sub>3</sub>, ppm)  $\delta$  0.95 (d, *J* = 6.6 Hz, 3H, 12-Me), 1.23 (d, *J* = 6.2 Hz, 3H, 14-H<sub>3</sub>), 1.26–1.43 (m, 8H, 4-H<sub>2</sub>–7-H<sub>2</sub>), 1.60–1.71 (m, 4H, 3-,8-H<sub>2</sub>), 2.15–2.24 (m, 2H, 11-H<sub>b</sub> and 12-H), 2.29–2.39 (m, 4H, 2-,9-H<sub>2</sub>), 2.74 (dd, *J* = 17.5 and 2.7 Hz, 1H, 11-H<sub>a</sub>), 4.72 (dq, *J* = 9.1 and 6.2 Hz, 1H, 13-H); <sup>13</sup>C NMR (CDCl<sub>3</sub>, ppm)  $\delta$  17.10 (q, 12-Me), 18.77 (q, C-14), 23.41 (t, C-8), 24.59 (t, C-3), 25.61 / 25.67 / 25.86 / 26.43 (t, C-4–C-7), 34.17 (d, C-12), 34.43 (t, C-2), 42.28 (t, C-11), 45.54 (t, C-9), 74.53 (d, C-13), 173.48 (s, C-1), 210.86 (s, C-10); MS (EI, %) *m/z* 254 (19) [M<sup>⊕</sup>], 239 (5) [M<sup>⊕</sup> - CH<sub>3</sub>], 183 (57) [M<sup>⊕</sup> - C<sub>5</sub>H<sub>11</sub>], 125 (44) [M<sup>⊕</sup> - C<sub>8</sub>H<sub>17</sub>O], 112 (100) [C<sub>8</sub>H<sub>16</sub><sup>⊕</sup>]; (α]<sub>546</sub><sup>19</sup>-31.1 (*c* 2.4, CHCl<sub>3</sub>); Anal calcd for C<sub>15</sub>H<sub>26</sub>O<sub>3</sub> (254.4), C 70.83, H 10.30; found C 70.82, H 10.35.

(12S,13R)-(-)-12-Allyl-10-oxo-13-tetradecanolide (10b). Scale 4.03 mmol, yield 65% (732 mg), hR<sub>f</sub> 21 (*n*-pentane:Et<sub>2</sub>O, 10:1); mp 39.0–39.5 °C; IR (KBr, cm<sup>-1</sup>)  $\bar{\nu}$  1717 (s,  $\nu$  OC=O), 1700 (s,  $\nu$  C=O),1254 (m,  $\nu_{as}$  C-CO-O), 910 (m,  $\delta$  =C-H oop), 3081 (w,  $\nu$  =C-H), 1640 (w,  $\nu$  C=C); <sup>1</sup>H NMR (CDCl<sub>3</sub>, ppm)  $\delta$  1.26 (d, J = 6.2 Hz, 3H, 14-H<sub>3</sub>), 1.26–1.40 (m, 8H, 4-H<sub>2</sub>–7-H<sub>2</sub>), 1.59–1.72 (m, 4H, 3-,8-H<sub>2</sub>), 2.09 (ddt, J = 14.7, 7.7, 7.1 and 1.4 Hz, 1H, 1'-H<sub>b</sub>), 2.21 (dddt, J = 14.7, 6.4, 4.9, 7.1 and 1.4 Hz, 1H, 1'-H<sub>a</sub>), 2.26–2.37 (m, 5H, 2-,9-H<sub>2</sub> and 12-H), 2.53 (dd, J = 18.1 and 6.2 Hz, 1H, 11-H<sub>B</sub>, part of an AB system), 2.54 (dd, J = 18.1 and 4.8 Hz, 1H, 11-H<sub>A</sub>, part of an AB system), 4.82 (dq, J = 8.3 and 6.2 Hz, 1H, 13-H), 5.03 (ddt, J = 17.4, 2.0 and 1.4 Hz, 1H, 3'-H<sub>trans</sub>), 5.05 (ddt, J = 18.1 and 5.2 Hz, 1H, 13-H), 5.03 (ddt, J = 17.4, 2.0 and 1.4 Hz, 1H, 3'-H<sub>trans</sub>), 5.05 (ddt, J = 18.1 and 5.2 Hz, 1H, 13-H), 5.03 (ddt, J = 17.4, 2.0 and 1.4 Hz, 1H, 3'-H<sub>trans</sub>), 5.05 (ddt, J = 18.1 and 5.2 Hz, 1H, 13-H), 5.03 (ddt, J = 17.4, 2.0 and 1.4 Hz, 1H, 3'-H<sub>trans</sub>), 5.05 (ddt, J = 18.1 and 5.2 Hz, 1H, 13-H), 5.03 (ddt, J = 17.4, 2.0 and 1.4 Hz, 1H, 3'-H<sub>trans</sub>), 5.05 (ddt, J = 18.1 and 5.2 Hz, 1H, 13-H), 5.03 (ddt, J = 17.4, 2.0 and 1.4 Hz, 1H, 3'-H<sub>trans</sub>), 5.05 (ddt, J = 18.1 and 5.2 Hz, 1H, 13-H), 5.03 (ddt, J = 17.4, 2.0 and 1.4 Hz, 1H, 3'-H<sub>trans</sub>), 5.05 (ddt, J = 18.1 and 5.2 Hz, 1H, 13-H), 5.03 (ddt, J = 17.4, 2.0 and 1.4 Hz, 1H, 3'-H<sub>trans</sub>), 5.05 (ddt, J = 18.1 and 5.2 Hz, 1H, 13-H), 5.03 (ddt, J = 18.1 and 5.2 Hz, 1H, 13-H<sub>trans</sub>), 5.05 (ddt, J = 17.4, 2.0 and 1.4 Hz, 1H, 3'-H<sub>trans</sub>), 5.05 (ddt, J = 18.1 and 5.2 Hz, 1H, 13-H), 5.03 (ddt, J = 17.4, 2.0 and 1.4 Hz, 1H, 3'-H<sub>trans</sub>), 5.05 (ddt), 5.0

10880

 $J = 9.7, 2.0 \text{ and } 1.4 \text{ Hz}, 1\text{H}, 3'-\text{H}_{cis}), 5.71 \text{ (ddd, } J = 17.4, 9.7, 7.7 \text{ and } 6.4 \text{ Hz}, 1\text{H}, 2'-\text{H}); {}^{13}\text{C} \text{ NMR (CDCl}_3, \text{ppm) } \delta 18.99 \text{ (q, C-14)}, 23.32 \text{ (t, C-8)}, 24.22 \text{ (t, C-3)}, 25.66 / 25.75 / 25.81 / 26.34 \text{ (t, C-4-C-7)}, 34.37 \text{ (t, C-2)}, 35.51 \text{ (t, C-1')}, 38.07 \text{ (d, C-12)}, 42.04 \text{ (t, C-9)}, 42.26 \text{ (t, C-11)}, 73.06 \text{ (d, C-13)}, 117.48 \text{ (t, C-3')}, 135.20 \text{ (d, C-2')}, 173.12 \text{ (s, C-1)}, 210.23 \text{ (s, C-10)}; \text{MS (EI, } m/z 280 \text{ (49) } [\text{M}^{\oplus}], 265 \text{ (17) } [\text{M}^{\oplus} - \text{CH}_3], 185 \text{ (46) } [\text{M}^{\oplus} - \text{C}_7\text{H}_{11}], 139 \text{ (42) } [\text{C}_9\text{H}_150^{\oplus}], 81 \text{ (100) } [\text{C}_5\text{H}_50^{\oplus}]; [\alpha]_{\text{D}}^{28} - 28.8, [\alpha]_{546}^{-28} - 34.0 \text{ (c } 1.2, \text{CHCl}_3); \text{ Anal calcd for C}_{17}\text{H}_{28}\text{O}_3 \text{ (280.4)}, \text{C} 72.82, \text{H} 10.07; \text{ found C} 72.91, \text{H} 10.00.$ 

#### Chemoselective Carbonyl Reduction of 10a to 5

#### General Procedure: See ref.<sup>7</sup>

(12S,13R)-(-)-12-Methyl-13-tetradecanolide (5). Scale 2.80 mmol, yield 51% (344 mg), hR<sub>f</sub> 24 (n-pentane:Et<sub>2</sub>O, 50:1); IR (film, cm<sup>-1</sup>)  $\tilde{v}$  1731 (s, v OC=O),1216 / 1247 (m, v<sub>as</sub> C-CO-O); <sup>1</sup>H NMR (CDCl<sub>3</sub>, ppm)  $\delta$  0.88 (d, J = 6.9 Hz, 3H, 12-Me), 1.21 (d, J = 6.2 Hz, 3H, 14-H<sub>3</sub>), 1.24–1.47 (m, 16H, 4-H<sub>2</sub>–11-H<sub>2</sub>), 1.60 (m<sub>c</sub>, 1H, 12-H), 1.62 (m<sub>c</sub>, 1H, 3-H<sub>b</sub>), 1.72 (m<sub>c</sub>, 1H, 3-H<sub>a</sub>), 2.30 (ddd, J = 14.4, 7.9 and 3.7 Hz, 1H, 2-H<sub>b</sub>), 2.41 (ddd, J = 14.4, 9.5 and 3.7 Hz, 1H, 2-H<sub>a</sub>), 4.64 (dq, J = 9.9 and 6.2 Hz, 1H, 13-H); minor diastereomer  $\delta$  4.95 (13-H, 3%); <sup>13</sup>C NMR (CDCl<sub>3</sub>, ppm)  $\delta$  15.75 (q, 12-Me), 18.97 (q, C-14), 22.26 (t, C-11), 24.10 (t, C-3), 24.35 / 24.79 / 25.61 / 25.97 / 26.33 / 26.37 / 30.81 (t, C-4–C-10), 34.42 (t, C-2), 37.78 (d, C-12), 74.68 (d, C-13), 173.46 (s, C-1); MS (EI, %) m/z 240 (7) [M<sup>⊕</sup>], 222 (5) [M<sup>⊕</sup> - H<sub>2</sub>O], 211 (11) [M<sup>⊕</sup> - CHO], 196 (76) [M<sup>⊕</sup> - CO<sub>2</sub>], 98 (60) [C<sub>7</sub>H<sub>14</sub><sup>⊕</sup>], 70 (100) [C<sub>5</sub>H<sub>10</sub><sup>⊕</sup>]; [α]<sub>1</sub><sup>19</sup> -49.7, [α]<sub>546</sub> -58.4 (c 2.0, CHCl<sub>3</sub>); CD (MeCN) Δε +0.14 (212 nm); Anal calcd for C<sub>15</sub>H<sub>28</sub>O<sub>2</sub> (240.4), C 74.95, H 11.74; found C 75.00, H 11.67.

## Diastereoselective Dihydroxylation of 10b and Ketalization to 11

*Procedure*: A soln of OsO<sub>4</sub> (300 mg, 1.18 mmol) in Et<sub>2</sub>O (30 mL) was added to **10b** (280 mg, 1.00 mmol) in Et<sub>2</sub>O (50 mL) containing pyridine (0.2 mL), and the mixture stirred at room temp for 3 h. The supernatant was decanted, the residue dissolved in dichloromethane (80 mL) and treated with 15% NaHSO<sub>3</sub> aq (80 mL, 115 mmol). After stirring at room temp for 14 h, the organic layer was separated and the aqueous extracted with Et<sub>2</sub>O (3 × 100 mL). The combined organic extracts were dried with Na<sub>2</sub>SO<sub>4</sub>, Amberlyst<sup>®</sup> 15 (1.0 g) was added, and the mixture was stirred at room temp for 1 h. The resin was filtered off, the filtrate concentrated under reduced pressure, and the residue purified by column chromatography to provide **11** (82 mg, 28%) as colorless crystals.

(1S,2R,13S,16R)-(+)-3,14,19-Trioxatricyclo[11.4.1.1<sup>13,16</sup>]nonadecan-4-one (11). hR<sub>f</sub> 17 (*n*-pentane:Et<sub>2</sub>O, 4:1); mp 83.0 - 84.0 °C; IR (KBr, cm<sup>-1</sup>)  $\tilde{v}$  1726 (s, v OC=O), 1055 / 1112 / 1183 / 1160 / 989 (s, v C-O), 1254 (s, v<sub>as</sub> C-CO-O); <sup>1</sup>H NMR (CDCl<sub>3</sub>, ppm)  $\delta$  1.20 (d, *J* = 6.3 Hz, 3H, 2-Me), 1.33 (ddd, *J* = 12.9, 12.9 and 1.9 Hz, 1H, 18-H<sub>b</sub>), 1.36–1.58 (m, 13H, 7-H<sub>2</sub>–11-H<sub>2</sub>, 17-H<sub>2</sub> and 12-H<sub>b</sub>), 1.65 (m<sub>c</sub>, 2H, 6-H<sub>2</sub>), 1.87 (ddd, *J* = 14.1, 8.0 and 1.9 Hz, 1H, 12-H<sub>a</sub>), 1.99 (dddd, *J* = 12.9, 5.6, 0.8 and 0.7 Hz, 1H, 18-H<sub>a</sub>), 2.10 (dddddd, *J* = 12.9, 8.3, 5.7, 5.6 and 3.0 Hz, 1H, 1-H), 2.25 (ddd, *J* = 15.0, 10.5 and 3.7 Hz, 1H, 5-H<sub>b</sub>), 2.50 (ddd, *J* = 15.0, 6.6 and 3.3 Hz, 1H, 5-H<sub>a</sub>), 3.82 (ddd, *J* = 7.1, 4.8 and 1.1 Hz, 1H, 15-H<sub>b</sub>), 3.86 (dd, *J* = 7.1 and 1.3 Hz, 1H, 15-H<sub>a</sub>), 4.57 (ddd, *J* = 4.8, 3.0, 3.0 and 1.3 Hz, 1H, 16-H), 4.75 (dq, *J* = 8.3 and 6.3 Hz, 1H, 2-H); minor diastereomer  $\delta$  4.95 (2-H, 3%); <sup>13</sup>C NMR (CDCl<sub>3</sub>, ppm)  $\delta$  18.27 (q, 2-Me), 21.72 (t, C-11), 25.01 (t, C-6), 26.11 / 26.44 / 26.70 / 26.82 (t, C-7-C-10), 31.72 (t, C-17), 34.49 (d, C-1), 35.15 / 35.54 / 36.00 (t, C-5, -12, -18), 68.46 (t, C-15), 73.77 / 73.98 (d, C-2, -16), 109.34 (s, C-13), 172.79 (s, C-4); MS (EI, %) *m*/z 296 (13) [M<sup>⊕</sup>], 266 (2) [M<sup>⊕</sup> - CH<sub>2</sub>O], 185 (39) [M<sup>⊕</sup> - C<sub>6</sub>H<sub>7</sub>O<sub>2</sub>], 139 (48) [M<sup>⊕</sup> - C<sub>9</sub>H<sub>17</sub>O<sub>2</sub>], 112 (100) [C<sub>8</sub>H<sub>16</sub><sup>⊕</sup>]; (α]<sub>D<sup>2</sup></sub><sup>24</sup>+40.3, (α]<sub>546</sub><sup>24</sup>+48.0 (c 1.0, CHCl<sub>3</sub>); CD (MeCN)  $\Delta \epsilon$  -0.16 (213 nm); Anal calcd for C<sub>17</sub>H<sub>28</sub>O<sub>4</sub> (296.4), C 68.89, H 9.52; found C 69.00, H 9.49.

## Acknowledgement

Thanks are due to Dr. H. Surburg and the perfumers of Haarmann & Reimer GmbH, D-37601 Holzminden, for olfactory evaluation. Special thanks go to Prof. Dr. W. Steglich and Dipl.-Chem. M. Müller, Institut für Organische Chemie der Universität München, for recording the CD spectra, and to Dr. C. Wolff, Universität Kiel, for his kind assistance in NMR assignment problems. – P. K. is most grateful to the Stiftung Stipendien-Fonds des Verbandes der Chemischen Industrie for a grant. In addition, this work was financially supported by the Fonds der Chemischen Industrie. P. KRAFT and W. TOCHTERMANN

# REFERENCES

Dedicated with best wishes to Professor Hans Jürgen Bestmann on the occasion of his 70<sup>th</sup> birthday.

- 1. Synthesis of Medium and Large Ring Compounds—XL. Part XXXIX: See ref.<sup>7</sup>
- Seebach, D. Angew. Chem. Int. Ed. Engl. 1988, 27, 1624–1654; Angew. Chem. 1988, 100, 1685–1715; Smith, M. B. Organic Synthesis; McGraw-Hill, Inc.: New York, 1994; pp. 865–869.
- 3. Fráter, G.; Müller, U.; Günther, W. Tetrahedron 1984, 40, 1269-1277.
- 4. Fráter, G. Helv. Chim. Acta 1979, 62, 2825–2828; Fráter, G. Ibid. 1979, 62, 2829–2832.
- 5. Uno, T.; Watanabe, H.; Mori, K. Tetrahedron 1990, 46, 5563-5566.
- 6. Kraft, P.; Tochtermann, W. Liebigs Ann. Chem. 1994, 1161-1164.
- 7. Kraft, P.; Tochtermann, W. Liebigs Ann. 1995, 1409-1414 and references therein.
- 8. Mukhopadhyay, T.; Seebach, D. Helv. Chim. Acta 1982, 65, 385-391.
- 9. Baskaran, S.; Islam, I.; Raghavan, M.; Chandrasekaran, S. Chem. Lett. 1987, 1175-1178.
- Milenkov, B.; Hesse, M. Helv. Chim. Acta 1986, 69, 1323–1330; Milenkov, B.; Guggisberg, A.; Hesse, M. Ibid. 1987, 70, 760–765.
- 11. Wiberg, K. B.; Waldron, R. F.; Schulte, G.; Saunders, M. J. Am. Chem. Soc. 1991, 113, 971-977.
- Keller, M.; Snatzke, G. Tetrahedron 1973, 29, 4013–4016; Schellman, J. A.; Oriel, P. J. Chem. Phys. 1962, 37, 2114–2124; Schellman, J. A. Acc. Chem. Res. 1968, 1, 144–151.
- 13. Santiago, B.; Soderquist, J. A. J. Org. Chem. 1992, 57, 5844-5847.
- 14. Soderquist, J. A.; Rane, A. M. Tetrahedron Lett. 1993, 34, 5031-5034.
- Criegee, R. Justus Liebigs Ann. Chem. 1936, 522, 75–96; Criegee, R.; Marchand, B.; Wannowius, H. Ibid. 1942, 550, 99–133.
- 16. Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. Chem. Rev. 1994, 94, 2483-2547.
- 17. Hauser, F. M.; Ellenberger, S. R.; Clardy, J. C.; Bass, L. S. J. Am. Chem. Soc. 1984, 106, 2458-2459.
- 18. Johnson, C. R.; Barbachyn, M. R. J. Am. Chem. Soc. 1984, 106, 2459-2461.
- 19. Turpin, J. A.; Weigel, L. O. Tetrahedron Lett. 1992, 33, 6563-6564.
- 20. Ishihara, K.; Hanaki, N.; Yamamoto, H. J. Chem. Soc., Chem. Commun. 1995, 1117-1118.
- Rousseau, G. Tetrahedron 1995, 51, 2777–2849; Enders, D.; Plant, A.; Drechsel, K.; Prokopenko, O. F. Liebigs Ann. 1995, 1127–1128.

(Received in Germany 4 August 1995; accepted 10 August 1995)

10882