SYNTHESE D' a-AMINODIAL DEHYDES

BERNARD GARRIGUES * ET MOHAMED LAZRAQ

Laboratoire de Synthèse, Structure et Réactivité de Molécules Phosphorées associé au C.N.R.S., 118 Route de Narbonne, 31062 Toulouse Cédex

Abstract: The first N-protected aminodial dehydes have been syntesized by oxidation of N-protected aminodials or from aminodiacids by reduction of N-Boc di (N-metoxy N-methyl) amides.

Seuls, sont connus les α -aminoaldéhydes R-NH-C-CHO dans lesquels un groupement protecteur a été introduit sur l'atome d'azote : R = tBu-CO (Boc) 1 , R = $^{\rm C}_6{\rm H}_5$ -CH $_2$ -O-CO (CBz) 2 , R = Si(CH $_3$) $_2$ tBu 3 . Ces composés sont des inhibiteurs d'enzyme protéolytiques 4 et des intermédiaires de synthèse. Quelques peptides inhibiteurs d'enzymes, présentent une fonction aminoaldehyde sur la chaîne terminale 5 .

Dans ce travail, nous decrivons la synthèse d' α -aminodialdéhydes ; nous avons choisi comme groupement protecteur de l'atome d'azote le Boc. Deux méthodes de synthèse ont été utilisées.

La première méthode consiste à préparer le N-Boc aminodiol puis à l'oxyder en α -aminodialdéhyde. L'action de l'aminodiol $\underline{1a}$, en présence de ditertiobutyl dicarbonate, conduit au N-Boc aminodiol $\underline{2a}^6$ qui est oxydé par le complexe $\text{CrO}_3(\text{pyr})_2^7$ en N-Boc α -aminodialdéhyde $3a^8$ (schéma A).

La deuxième méthode de synthèse des N-Boc α aminodialdéhydes $\underline{3a}$ et $\underline{3b}$ a été réalisée en quatre étapes. L'azote des aminodiacides $\underline{4a}$ (R=H) et $\underline{4b}$ (R=CH $_3$) est protégé par action soit du tBuO-C(0)-O-N=C(CN)Ph 9 (BOC-ON), soit du ditertiobutyl dicarbonate. Les N-Boc aminodiacides obtenus $\underline{5a}$ 10 et $\underline{5b}$ réagissent avec le chloroformiate d'éthyle, en présence de triéthylamine, pour conduire aux N-Boc aminodianhydrides $\underline{6a}$ 11 et $\underline{6b}$ 11 qui, par action de la di -0,N-méthylhydroxylamine, permettent d'obtenir les N-Boc di(N-méthoxy N-méthylamides) $\underline{7a}$ et $\underline{7b}$. La dernière étape consiste à réduire $\underline{7a}$ et $\underline{7b}$ par LiAlH $_4$ 1,13 en N-Boc α -aminodialdéhydes $\underline{3a}$ 8 et $\underline{3b}$ 14 (schéma B). Ces produits sont en cours d'évaluation pharmacologique.

BIBLIOGRAPHIE ET NOTES

¹ J.A Fehrentz et B. Castro, Synthesis, 677 (1983).

² A. Ito, R. Takahashi et Y. Baha, Chem. Pharm. Bull. 23, 3081 (1975).

³ R. Labia et C. Morin, Chem. Letters, 1007 (1984).

4 H. Umezawa, Enzyme Inhibitions of Microbial Origin., University Park Press, Baltimore,(1972)

T. Aoyagi, T. Takenchi, A. Matsuzaki, K. Kawamura, S. Kando, M. Hamada, K. Maeda et H.Umezawa, J. Antibiotics 22, 283 (1969) ; T. Takeuchi et Y. Okami, ibid., <u>26</u>, 787 (1973) ,H. Umezawa, Enzyme Engineering <u>6</u>, 11 (1982).

 6 RMN 1 H (CDCl₃) $_{6}^{1}$ H : 4,5 (2H, s, H-O) 3,7 (4H, t, J = 7 Hz, H₂C-N) 3,3 (4H, t, J = 7Hz, H₂C-O) 1,5 (9H, s, H₃C) IR (Nujol) $_{9}$ cm⁻¹ : 1670 (C=O) Rdt = 88%, huile (C,H,N)

J.C. Collins, W.W. Hess et F.J. Frank. Tetrahedron Lett., 3363 (1968).

 8 10 Cr0₃ (pyr)₂ ,1 célite, CH₂Cl₂ , 48h à 20 °C. RMN 1 H (CDCl₃) δ^1 H : 9,2 (2H, s, H-C) 4,3 (4H, s, H₂C) 1,5 (9H, s, H₃C) IR (liquide) vcm⁻¹ : 2750 (C-H) 1750 (C=0 aldéhyde) et 1700 (C=0 urétane) Rdt = 65% ,liquide ,(C,H,N)

⁹ M. Itoh, D. Hagiwara et T. Kamitya, Tetrahedron Lett., 4393 (1975).

Soit BOC-ON + 4a + 2 NEt $_3$ dans eau, dioxanne (50/50), 2 heures à 20 °C. Soit 4a + tBuQC(0) 0-C(0)-0tBu + $\frac{7}{2}$ NEt $_3$, dans eau dioxanne 72h, température ambiante. RMN ¹H ($\frac{7}{2}$ H : 8,4 (2H, s, H-0) 3,9 (4H, s, H₂C) 1,2 (9H, s, H₃C). IR (nujol) 1665 cm⁻¹ (C=0 urétane) Rdt 76%, huile, (C, H, N)

¹¹ 5a + 2 NEt₃ + 2 Cl-C(0)OEt à -15 °C dans le THF (2 heures) le produit n'a pas été isolé 11 est conservé en solution

12 A 2 CH₃0-NHCH₃,HCl + 2 NEt₃ dans le THF on ajoute 6a en solution dans le THF, 24h à 20 °C. RMN 1H (CDCl₃) 3,8 (4H, s, H₂C) 3,6 (6H, s, H₃C-O) 1,7 (6H, s, H₃C-N) 1,5 (9H, s, H₃C-C); IR (liquide) v cm⁻¹ : 1740 (C=0 amide) 1690 (C=0 urétane). Rdt = 65%, liquide,(C,H,N).

¹³ S. Nahm et S.M. Weinreb, Tetrahedron Lett., 22, 3815 (1981).

 $7a + LiA1H_4$, éther 24 heures au reflux. RMN $\frac{1}{1}$ H (CDCl₃) $ε^1$ H : 9,2 (2H, s, H-C) 4,3 (2H, s, $\frac{1}{12}$ C) 4,2 (1H, q, J = 7 Hz, H-C) 1,5 (9H, s, H₃C) 1,3 (3H, d, J = 7 Hz, H₃C). IR (liquide), ν cm⁻¹ : 2750 (C-H) 1750 (C=0 aldéhyde) et 1700 (C=0 urétane). Rdt = 56%, liquide, (C,H,N)