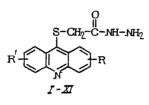
SYNTHESIS, PHYSICOCHEMICAL PROPERTIES, AND BIOLOGICAL ACTIVITY OF

(ACRIDINYL-9-THIO)ACETIC ACID HYDRAZIDES

A. A. Martynovskii, B. A. Samura,


UDC 615.281:547.835.5].012.1

V. N. Omelyanchik, A. I. Panasenko,

L. A. Omelyanchik, and T. V. Panasenko

It is known that amides and hydrazides of heterylthioacetic acids, derivatives of five- and six-membered aza-heterocycles are biologically active compounds [3, 4]. Esters and amides of substituted (acridinyl-9-thio)acetic acids, which we have previously studied, have pronounced pharmacological and antimicrobial activity [5-8].

We have carried out the synthesis and a primary biological screening of hydrazides of chloro-, ethoxy-, methoxy-, and nitro-substituted (acridinyl-9-thio)acetic acids. These hydrazides (I-XI) were obtained by treating esters of substituted (acridinyl-9-thio)acetic acids with hydrazine hydrate in an alcoholic medium.

The structure of the synthesized compounds was confirmed by IR-spectroscopy, mass spectrometry, and elemental analysis data. In the IR spectra of hydrazides I-XI, an absorption band is recorded of the stretching vibrations of the secondary amino group in the 3350-3170 cm⁻¹ region, and a vibration band of the carbonyl group C=O in the 1690-1610 cm⁻¹ region. Fragmentary ions are observed in the mass spectra of compounds II-XII, confirming the presence of a hydrazine fragment in the molecule $[M]^+$: $[M - NH_2]^+$, $[M - N_2H_2]^+$, $[M - N_2H_2]^+$, $[M - CONHNH_2]^+$ ions were recorded as the result of β -decomposition relative to the carbonyl group. The $[M - CH_2 - CO - NHNH_2]^+$ ions are the result of a typical β -decomposition relative to the heteryl ring of the molecule.

EXPERIMENTAL (CHEMICAL)

The IR spectra were run on a UR-20 spectrophotometer in a KBr tablet. The low and high resolution mass spectra were obtained on a "Varian MAT-311a" mass spectrometer. Conditions of running the spectra: ionizing voltage 70 eV, cathode emission current 300 μ A, accelerating voltage (3 kV, temperature of exposure 280-310°C). The samples were introduced directly into the ionic source. The results of the elemental analysis correspond to the calculated values.

 $\frac{(2-\text{Chloro-6-nitroacridinyl-9-thio})\text{acetic Acid Hydrazide (IV).}}{\text{of hydrazine hydrate was added to a solution of 3.77 g (0.01 mole) of ethyl ester of (2-chloro-6-nitroacridinyl-9-thio)\text{acetic acid in 50 ml of ethanol, and the mixture was heated on a water bath for 25-30 min and evaporated at room temperature. The residue was washed with water on a filter and dried. Yield 2.19 g (65%), red needles (from ethanol).}$

Compounds I-III (Table 1) were obtained in a similar manner.

<u>Compounds VIII-XI</u> were synthesized in a similar way. On cooling the reaction mixture, the compounds precipitated. They were crystallized from an ethanol-water (2:1) mixture.

<u>Compounds V-VII</u> were synthesized in a similar way, but the duration of heating the reaction mixture varied from 10 to 25 min.

Zaporozh'e Medical Institute, Zaporozh'e University. Translated from Khimiko-farmatsevticheskii Zhurnal, Vol. 24, No. 7, pp. 31-32, July, 1990. Original article submitted August 17, 1989.

			a	
Com- pound	R	R'	mp, °C	Empirical formula
I II III VV VVI VII VIII IX X	2-Cl 3-Cl 4-Cl 2-Cl H 2-OEt H 2-OMe 4-OMe 2-Me	H H 6-NO ₂ H 6-NO ₂ H H H	160 - 162 139 - 141 182 - 184 280 - 282 136 - 137 163 - 164 174 - 175 132 - 134 185 - 187 270 - 272	$\begin{array}{c} C_{15}H_{22}CIN_3OS\\ C_{15}H_{21}CIN_3OS\\ C_{15}H_{21}CIN_3OS\\ C_{15}H_{11}CIN_4O_3S\\ C_{15}H_{13}N_3OS\\ C_{15}H_{13}N_3OS\\ C_{17}H_{17}N_3OS\\ C_{15}H_{12}N_4O_3S\\ C_{16}H_{15}N_3O_2S\\ C_{16}H_{15}N_3OS\\ C_{16}H_{15}N_{25}C\\ C_{16}H_{15}N_{15}N_{15}C\\ C_{16}H_{15}N_{15}C\\ C_{16}H_{15}N_{15}C\\$
XI	2-Me 4-Me	Н	285-287	C ₁₆ H ₁₅ N ₃ OS

TABLE 1. Hydrazides of Substituted (Acridinyl-9-thio)acetic Acids

TABLE 2. Acute Toxicity, Neurotropic and Anti-Inflammatory Activity of the Synthesized Compounds

Compound	LDse	Neurotropic activity (sleep duration)		Increment in volume of the rat's paw, % of initial value		
		min	%	after 1 h	after 3 h	after 5 h
11 111 V V1 V11 V11 V111 IX X X1	224 355 70 205 180 310 310 230 300	Not tested 120 ± 9.4 92 ± 5.5 91 ± 13.4 - 104 ± 10.6 150 ± 6.6 112 ± 13	133 113 112 	$\begin{array}{c} 33 \pm 2.8 \\ 51 \pm 3.1 \\ 42 \pm 7.4 \\ 12 \pm 6.7 \\ 24 \pm 4.1 \\ 23 \pm 4.8 \\ 20 \pm 3.7 \\ - \\ - \end{array}$	$\begin{array}{c} 29 \pm 2.4 \\ 67 \pm 4.2 \\ 32 \pm 3.4 \\ 18 \pm 6.6 \\ 26 \pm 3.3 \\ 35 \pm 7.2 \\ 36 \pm 1.7 \\ - \end{array}$	23 ± 3.9 42 ± 3.8 24 ± 3.5 12 ± 6.3 14 ± 1.5 38 ± 4.6 26 ± 3.5 —
Aminazine, 5 mg/kg		112 ± 14.0	137	—	—	-
Butadione, 100 mg/kg	<u> </u>	_	—	$24 \pm 10,0$	$37 \pm 14,0$	31 ± 10.0

EXPERIMENTAL (BIOLOGICAL)

The acute toxicity was determined on mice by the V. B. Prozorovskii et al. method with intraperitoneal administration of the compounds [9]. The anti-inflammatory action was studied on a formalin model of aseptic inflammation in white rats [10].

The influence of the synthesized compounds on ethaminal sodium induced sleep was studied according to [2] (Table 2).

The antihypoxic properties of the synthesized compounds were studied under conditions of hypoxic hypoxia on male rats of the Wistar line, each weighing 150-200 g and on male mice each weighing 18-20 g. The preparations studied were administered intraperitoneally in a dose of $1/20 \text{ LD}_{50}$, 30 min before placing the animals in a barochamber. The elevation was brought to a height of 10,000 m in the course of 10 min. The life time of the animals was recorded to which the synthesized compounds, dibasol in a dose of 1 mg/kg or gutymin in a dose of 100 mg/kg were administered. The results obtained are presented in Table 3.

The antimicrobial activity was determined by the method of serial dilutions in a liquid culture medium (aminopeptide) on 8 strains of pathogenic microorganisms and fungi (<u>Staphylococcus aureus</u>, <u>Escherichia coli</u>, <u>Bacillus pyocyaneus</u>, anthracoid, yeast-like fungus). The experimental results were examined 18-20 h after placing the samples in a thermostat at a temperature of 37°C.

Analysis of the results of biological investigations showed that the hydrazides of chloro-, ethoxy-, methoxy-, and nitro-substituted acridinyl-9-thioacetic acids are moderately toxic compounds according to the K. K. Sidorov classification, and display pronounced neurotropic, anti-inflammatory, analgesic, antihypoxic, antimicrobial and fungistatic properties, in several cases surpassing the activity of preparations used as reference standards (see Tables 2, 3).

TABLE 3. Antihypoxic and Analgesic Activity of Compounds I-XI

Compound (dose.)	Life time under hypoxia conditions		Change in pain threshold					
	min	%	after 30 min	after 60 min	after 90 min	after 120 min	after 150 min	after 180 min
V	21 ± 2.6 (rats)	81	143±7,7	$203\pm15,2$	$230 \pm 14,7$	$207 \pm 16,7$	198±7,9	$183 \pm 12,7$
VI	$35\pm6,1$ (rats)	134	·				·	_
	27 ± 4 (mice)	 675	118±7,5 148±19,6	140±9,1 193±32,7	$173 \pm 16,5$ $205 \pm 33,9$	216 ± 22.7 195 ± 28.1	224 ± 14.5 169 ± 17.7	200 ± 12.8 144 ± 15,9
IX	42 ± 5 (mice)	1050	123 ±8,4	140±6,8	130±12,3	117 <u>+</u> 9,1	102±7,3	104 ± 7.6
Dibasol (1 mg/kg) Gutymin (100 mg/kg) Analgin	$49\pm 5.9 \\ 52\pm 7.0 \\ -$	188 200	 137±20	$\frac{-}{165\pm40}$	$\frac{-}{179 \pm 32}$	 155±35,2	- 150±20,2	$\frac{-}{127\pm26}$

<u>Note</u>. In the study of the antihypoxic activity, the compounds were administered intraperitoneally to rats in a dose of $1/20 \text{ LD}_{50}$ per 1 kg body weight of the animal, in the remaining cases - $1/10 \text{ LD}_{50}$.

The antimicrobial activity of the compounds studied is clearly pronounced with respect to <u>Staphylococcus aureus</u>, the anthracoid spores and <u>Candida Albicans</u> fungi. The compounds have this action in concentrations of 62.5, 31.2, 15.6, 7.8 μ g/ml, respectively.

Considering the relationship between the structure of the (acridinyl-9-thio)acetic acid hydrazides and the character of their biological activity, it should be noted that blocking of the ester group in the molecules of (monochloroacridinyl-9-thio)acetic acid esters by a hydrazine residue results in a substantial decrease in the acute toxicity of the compounds and intensification of the anti-inflammatory and anti-hypoxic activity. Replacement of the methoxy group in the 2- and 4-positions of the molecules of (acridinyl-9thio)acetic acid hydrazides by an ethoxy group results in a decrease in the acute toxicity. In the series of ethoxy-, methoxy-, chloro-substituted hydrazides of (acridinyl-9-thio)acetic acids, the analgesic and anti-inflammatory activity is most strongly pronounced for the ethoxy derivatives.

LITERATURE CITED

- 1. M. O. Briger, E. A. Ved'mina, and V. V. Volodavets, Handbook on Microbiological and Virological Methods of Investigation [in Russian], Moscow (1982).
- 2. B. V. Gatsura, Methods of Primary Pharmacological Investigation of Biologically Active Compounds [in Russian], Moscow (1974).
- 3. I. A. Mazur, A. A. Martynovskii, L. I. Morozova, et al., Farm. Zh., No. 1, 56-59 (1978).
- 4. I. A. Mazur and E. O. Morozova, Farm. Zh., No. 5, 66-67 (1980).
- 5. N. N. Malovichko, A. I. Panasenko, I. V. Mel'nik, et al., in: First Zaporozh'e Interinstitution Regional Conference of Young Scientists; Summaries of Lectures [in Russian], Zaporozh'e (1985), p. 64.
- A. A. Martynovskii, L. A. Shtoiko, and N. N. Malovichko, in: Fourth Congress of Pharmaceuticists of the Ukrainian SSR, Summaries of Lectures [in Russian], Zaporozh'e (1984), p. 48.
- A. A. Martynovskii, L. I. Borodin, and L. A. Shtoiko, in: Fifth Congress of Pharmaceuticists of the Ukrainian SSR, Summaries of Lectures [in Russian], Zaporozh'e (1985), p. 101.
- A. A. Martynovskii, L. A. Omelyanchik, A. I. Panasenko, et al., Ukr. Khim. Zh., <u>55</u>, No. 3, 298 (1989).
- 9. V. B. Prozorovskii, M. P. Prozorovskaya, and V. M. Demchenko, Farmakol. Toksikol., No. 4, 497-502 (1978).
- L. Salyamon, Pharmacology of Pathological Processes [in Russian], Moscow (1951), pp. 15-69.