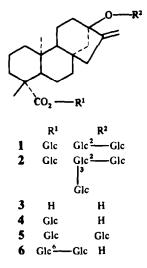
BIOTRANSFORMATION OF STEVIOL BY CULTURED CELLS OF EUCALYPTUS PERRINIANA AND COFFEA ARABICA*

YUTAKA ORIHARA, KENJI SAIKI and TSUTOMU FURUYA

School of Pharmaceutical Sciences, Kitasato University, Minato-ku, Tokyo 108, Japan

(Received 5 June 1991)


Key Word Index—Eucalyptus perriniana; Myrtaceae; Coffea arabica; Rubiaceae; cell suspension culture; biotransformation; steviol; rubusoside; steviol 19-β-gentiobiosyl ester; glucosylation.

Abstract—A new biotransformation product, steviol 19- β -gentiobiosyl ester, together with steviol 19- β -glucopyranosyl ester and steviol-13-O- β -glucopyranoside 19- β -glucopyranosyl ester (rubusoside), was isolated from *Eucalyptus perriniana* jar fermentor culture following the administration of steviol. Only rubusoside was isolated as a biotransformation product of steviol from *Coffea arabica* cell suspension culture.

INTRODUCTION

Stevioside (1) and rebaudioside A (2) are the main sweet diterpene glycosides of *Stevia rebaudiana* leaves, and are used as sweeteners in the food industry. Several attempts to produce the sweet compounds using plant tissue culture techniques have been performed [1].

Cultured cells of Eucalyptus periniana characteristically produce eight triterpenes [2]. This cell line also has the ability to glycosylate and hydroxylate (-)-menthol [3], (+)-menthol [4] and 18β -glycyrrhetinic acid [5]. Cultured cells of Coffea arabica can produce theobromine and caffeine [6], and convert phenylacetic and 2-phenylpropionic acids to their sucrose esters [7] and 18β glycyrrhetinic acid to its glucopyranosyl ester [5]. We now report on the isolation and structure elucidation of biotransformation products of steviol (3), the aglycone of

^{*}Part 77 in the series 'Studies on Plant Tissue Culture'. For Part 76 see Koge, K., Orihara, Y. and Furuya, T. Appl. Microbiol. Biotechnol. (in press).

1 and 2, produced by cultured cells of E. perriniana and C. arabica.

RESULTS AND DISCUSSION

The substrate, steviol (3), was obtained by the hydrolysis of crude stevioside (1) with crude hesperidinase in citrate-phosphate buffer (pH 4). In preliminary experiments, it was clear that 3 is more toxic to plant cells than mono- and triterpenes, so that low concentrations of the substrate were required. An ethanol solution of 3 (500 mg \times 2, three days interval) with glucose (100 g \times 1) was administered to the 101 jar fermentor culture of *E. perriniana* at stationary phase. After final administration, the cells were cultured for a further eight days and harvested. From this biotransformation experiment, products 4-6 were isolated. By contrast only 5 was isolated from eight culture flasks of *C. arabica* (administered 200 mg of 3). On TLC analysis, 4 and 5 were detected in the medium.

The ${}^{13}CNMR$ chemical shifts of 3 and its biotransformation products 4–6 are shown in Table 1. These data show that 4 contains 26 carbon atoms, i.e. six more than 3, and that 5 and 6 contains 32 carbon atoms, i.e. 12 more than 3. Their signals of the steviol moiety were compared with those of 3, the substrate. In all products, C-19 was shifted to a higher field. On the other hand only in 5 was C-13 shifted to lower field and C-12, C-14 and C-16 to higher field. From these data, sugars are connected to C-19 carboxylic acid in all products and to the C-13 tertiary hydroxyl group in 5.

Product 4 was isolated as needles, and gave a M, of 480 on the basis of FAB-MS. As proton signals of acetate (4a) assignable to 1'-5' had relatively large coupling constants (J = 8-9.5 Hz), connected sugar was determined as β glucose. Thus 4 is steviol 19- β -glucopyranosyl ester.

Product 6 was isolated as needles, and had a M, of 642, 162 more than 4. In the ¹³C NMR spectrum, the steviol moiety of 6 was similar to 4, so that two sugars were connected to C-19 carboxylic acid. From the proton NMR analysis of acetate, both sugars are β -glucose. As

	3	4	4 a	5	5 a	6	6 a
1	41.2	41.0	(40.4*)	40.9	(40.5)	40.9	(40.4 [*])
2	20.1	19.7	(19.0)	19.6	(19.1)	19.7	(19.1)
3	38.8	38.6	(37.8)	38.5	(37.7)	38.5	(37.8)
4	44.0	44.3	(44.1)	44.2	(44.2)	44.3	(44.1)
5	57.1	57.6	(56.9)	57.5	(56.9)	57.6	(57.0)
6	22.8	22.4	(21.6)	22.3	(21.5)	22.4	(21.6)
7	42.1	42.1	(41.2)	41.9	(41.2)	42.1	(41.3)
8	42.1	42.0	(41.6)	42.6	(42.3)	42.0	(41.8)
9	54.4	54.4	(53.7)	54.1	(53.5)	54.4	(53.8)
10	40.0	40.0	(39.4)	40.0	(39.4)	40.0	(39.4)
11	21.0	21.0	(20.4)	20.8	(20.3)	21.0	(20.4)
12	41.0	41.0	(39.2ª)	37.4	(37.5)	40.9	(39.7*)
13	79.9	79.9	(80.2)	86.1	(86.4)	80.0	(79.8)
14	47.6	47.5	(47.2)	44.7	(43.4)	47.5	(47.0)
15	48.3	48.3	(47.4)	47.9	(47.5)	48.2	(47.4)
16	157.9	157.9	(156.0)	154.7	(151.7)	157.9	(155.3)
17	103.1	103.0	(103.0)	104.6	(105.1)	103.0	(103.0)
18	29.5	28.7	(28.7)	28.5	(28.8)	28.8	(29.0)
19	180.2	177.0	(175.6)	177.1	(175.3)	177.1	(175.1)
20	16.1	15.9	(15.7)	15.8	(16.1)	16.0	(16.1)
1'		96.0	(91.2)	96.1	(91.1)	95.9	(91.1)
2′		74.2	(70.2)	74.2	(70.4)	73.9	(70.3)
3'		79.3	(73.1)	79.3	(73.0)	79.2 *	(72.9)
4'		71.3	(68.1)	71.2	(68.0)	71.7 ^b	(68.6)
5'		79.5	(72.4)	79.5	(72.4)	78.6ª	(74.8)
6'		62.3	(61.7)	62.2	(61.5)	69.8	(67.5)
1″					()	105.4	(100.7)
2″						75.3	(71.1)
3″						78.3*	(73.0)
4″						71.3°	(68.4)
5″						78.5ª	(71.7)
- 6″						62.8	(61.8)
1‴				99.9	(95.9)		(*1.0)
2"'				75.7	(71.6)		
3"'				79.0	(73.0)		
4"'				72.5	(68.7)		
5"				78.2	(71.5)		
5 6‴′				63.2	(62.4)		

Table 1. ¹³C NMR spectral data of compounds 3-6 (pyridine- d_3) and their acetates (CDCl₃) (in parentheses) (at 75 MHz)

^{a.b} Assignments may be reversed in each vertical column.

¹³C chemical shifts of C-6' was observed at δ 69.8, shifted to lower field than common glucose, connection of glucoses was that second glucose connected to C-6' in the first glucose. Thus **6** is steviol 19- β -gentiobiosyl ester.

Product 5 was isolated as amorphous solid and had a M, of 642 as well as 6. As previously mentioned, two sugars were connected to 13-hydroxyl and 19-carboxylic acid groups. Connected sugars were determined as β -glucose by the analysis of proton NMR of its acetate, so that 5 is steviol-13-O- β -glucopyranoside 19- β -glucopyranosyl ester.

Compound 4 was synthesized from 3 and glucose derivatives [8]. Compound 5 was firstly isolated from *Rubus chingii* [9] (*R. suavissimus*, corrected in following paper [10]) as a sweet compound, and named rubusoside. However, 6 is a new compound.

Biotransformation yields from 3 to 4, 5 and 6 were calculated as 9.7, 10.6 and 21%, respectively. In biotransformation experiment with cultured cells of C. arabica,

only product 5 (yield, 7.5%) was isolated and product 4 was detected by TLC analysis. In coffee cells 3 may be glucosylated at C-19 firstly then at C-13. All these products have a sweet taste, but they are not so sweet as stevioside.

EXPERIMENTAL

Mps: uncorr. ¹H NMR: 300 MHz, setting CHCl₃ signal at $\delta_{\rm H}$ 7.26 and the lowest pyridine (pyridine- d_4) signal at $\delta_{\rm H}$ 8.60 ppm. ¹³C NMR: 75 MHz, setting CDCl₃ signal at $\delta_{\rm C}$ 77.0 and the lowest pyridine- d_3 signal at $\delta_{\rm C}$ 150.0 ppm.

Cell lines. Cultured cells of Eucalyptus perriniana used in this investigation were derived from young stems of this plant in 1980 and maintained on BA1 agar medium [Murashige and Skoog (MS) medium [11] supplemented with sucrose $(30 \text{ g} \text{ l}^{-1})$, agar $(9 \text{ g} \text{ l}^{-1})$ and 6-benzylaminopurine $(1 \text{ mg} \text{ l}^{-1})$], as previously reported [2]. Cultured cells of Coffea arabica were derived from seed segments in 1982 and subcultured on DK agar medium

[MS medium supplemented with sucrose (30 gl^{-1}) , agar (9 gl^{-1}) , 2,4-dichlorophenoxyacetic acid $(1 \text{ mg}1^{-1})$ and kinetin $(0.1 \text{ mg}1^{-1})$], as previously reported [6].

Enzymatic hydrolysis of crude stevioside. Stevioside (1) (10 g) and crude hesperidinase (1 g) were dissolved in citrate-Pi buffer (pH 4.0, 1.51), and then added EtOH (0.51). These mixt. was kept at 37° with shaking for 7 days. Two portions of 1 (5 g × 2) were added to the reaction mixt. every 7 days after the crude steviol (3) was filtered off. The reaction mixt. was kept at 37° for a further 2 weeks and the crude 3 was filtered off. These crude steviols were combined and recrystallized from MeOH to yield needles (5.225 g, yield 66%).

Steviol (3). Mp 204-205°; $[\alpha]_{D1}^{D1} - 65^{\circ}$ (CHCl₃; c1.0); IR ν_{max}^{KBr} cm⁻¹: 3460 (OH), 3275 (OH), 2800-3000 (CH₂), 1650 (CO₂H); ¹H NMR (pyridine-d₃): δ 1.07 (3H, s, Me), 1.23 (3H, s, Mc), 4.90 (1H, br s, H₂-17), 5.35 (1H, br s, H₂-17).

Feeding experiment to the jar fermentor culture of E. perriniana. Cell suspension culture were initiated from static cultured cells in a 11 conical flask containing 250 ml medium, and cultured on a reciprocal shaker (90 strokes min⁻¹) for 3 weeks at 25° in the dark. The cells and the medium in 8 flasks were inoculated into a 101 jar fermentor (Takasugi Seisakusho, Japan) containing 81 BA1 medium, and cultured for 50 days setting temp. at 25°, aeration ratio at 0.125 VVM and agitation speed at 50 rpm. When the culture was achieved to the stationary phase, glucose (100 g/400 ml H₂O, autoclaved) and 3 (500 mg/20 ml EtOH, through membrane filter) were administered, and 3 days later additional 3 (500 mg/20 ml EtOH) was administered. After 8 days culture, the cells and the medium were sepd by filtration. The medium was passed through Diaion HP20 column and the column was washed with H₂O and eluted with MeOH. The MeOH eluate was concd and partitioned between H₂O and n-BuOH. The BuOH layer was coned to obtain medium-BuOH Fr. (0.43 g). The cells (fr. wt 2563 g) was extracted (\times 2) with MeOH and MeOH extract was partitioned between EtOAc and H_2O . The H_2O layer was further extracted (\times 2) with *n*-BuOH and n-BuOH layer was coned to obtain cell-BuOH Fr. (17.59 g). The biotransformation products of 3 could be detected on TLC from medium-BuOH Fr. and cell-BuOH Fr. visualized by exposing I₂ vapor. These frs were chromatographed on silica gel and further purified by HPLC [column; Senshu Pak ODS-4301-N, solvent; MeOH-H₂O (80:20)]. From medium-BuOH Fr. products 4 (93.1 mg) and 5 (52.5 mg), from a part of cell-BuOH Fr. (7.975 g) products 4 (24.6 mg), 5 (73.4 mg) and 6 (193.1 mg) were obtained.

Feeding experiment to the shake flask culture of C. arabica. Cell suspension culture was initiated in DK liquid medium as well as *E. perriniana*. An EtOH soln (12.5 mg ml⁻¹, 2 ml to each flask) of 3 was administered and cultures returned to the shaker for a further 7 days. The cells were harvested through nylon mesh and the medium was extracted with *n*-BuOH. The cells were treated as well as the extraction procedures of *E. perriniana* cells. From the cell-BuOH Fr. (0.66 g) of 8 culture flasks (200 mg of 3 was administered) product 5 (22.6 mg) was isolated. Products 4 and 5 were also detected on TLC analysis of medium-BuOH Fr.

Steviol 19- β -glucopyranosyl ester (4). Needles, mp 190–192° (MeOH); $[\alpha]_D^{28} - 57°$ (MeOH; c 1.0); IR ν_{max}^{KBr} cm⁻¹: 3400 (OH), 2850–2950 (CH₂), 1730 (CO₂-Glc); FAB-MS m/z 503 [M + Na]⁺; ¹H NMR (pyridine- d_5): δ 1.18 (6H, s, Me), 3.90 (1H, ddd, J = 9.0, 4.0, 2.5 Hz, H-5'), 4.07 (1H, dd, J = 9.0, 8.0 Hz, H-2'), 4.13 (1H, dd, J = 9.0, 9.0 Hz, H-3'), 4.22 (1H, dd, J = 9.0, 9.0 Hz, H-4'), 4.26 (1H, dd, J = 12.0, 4.0 Hz, H-6'_a), 4.32 (1H, dd, J = 12.0, 2.5 Hz, H-6'_b), 4.87 (1H, br s, H_a-17), 5.32 (1H, br s, H_b-17), 6.10 (1H, d, J = 8.0 Hz, H-1').

Steviol-13-O- β -glucopyranoside 19- β -glucopyranosyl ester (5). Amorphous solid; $[\alpha]_{D^8}^{28} - 45^{\circ}$ (MeOH; c 1.0); IR v_{MBr}^{KBr} cm⁻¹: 3400 (OH), 2850–2930 (CH₂), 1730 (CO₂-Glc); FAB-MS m/z 665 [M + Na]⁺; ¹H NMR (pyridine- d_5): δ 1.11 (3H, s, Me), 1.13 (3H, s, Mc), 3.80–3.92 (2H, m, H-5', H-5'''), 3.92–4.00 (2H, m, H-2'', H-4'''), 4.02–4.21 (5H, m, H-2', H-3', H-4', H-3''', H-6'''), 4.25 (1H, dd, J = 12.0, 4.0 Hz, H-6', 4.32 (1H, br d, J = 12.0 Hz, H-6', 4.32 (1H, br d, J = 12.0 Hz, H-6'), 4.49 (1H, br d, J = 11 Hz, H-6'''), 4.87 (1H, br s, H_a-17), 5.01 (1H, d, J = 8.0 Hz, H-1'''), 5.41 (1H, br s, H_b-17), 6.02 (1H, d, J = 8.0 Hz, H-1').

Steviol 19- β -gentiobiosyl ester (6). Needles, mp 262-263° (MeOH); [α]_D⁸ - 43° (pyridine; c 0.33); IR v ^{KBr}_{max} cm⁻¹: 3390 (OH), 2830-2950 (CH₂), 1730 (CO₂-Glc); FAB-MS *m*/*z* 665 [M + Na]⁺; ¹H NMR (pyridine-*d*₅): δ 1.18 (3H, s, Me), 1.19 (3H, s, Me), 3.77 (1H, *m*, H-5"), 3.87 (1H, *dd*, *J* = 8.0, 8.0 Hz, H-2"), 3.96-4.14 (6H, *m*, H-2', H-3', H-4', H-5', H-3", H-4"), 4.19 (1H, *dd*, *J* = 11.5, 5.0 Hz, H-6'_a), 4.23 (1H, *dd*, *J* = 11.5, 5.0 Hz, H-6''_a), 4.23 (1H, *dd*, *J* = 11.5, 5.0 Hz, H-6''_a), 4.36 (1H, *brd*, *J* = 11.5 Hz, H-6''_b), 4.58 (1H, *brd*, *J* = 11.5 Hz, H-6''_b), 4.87 (1H, *brs*, H_a-17), 4.91 (1H, *d*, *J* = 8.0 Hz, H-1"), 5.32 (1H, *brs*, H_b-17), 6.01 (1H, *d*, *J* = 8.0 Hz, H-1').

Steviol 19- β -glucopyranosyl ester tetraacetate (4a). Amorphous solid; ¹H NMR (CDCl₃): δ 0.82 (3H, s, Me), 1.17 (3H, s, Me), 2.00 (3H, s, Ac), 2.03 (3H, s, Ac), 2.04 (3H, s, Ac), 2.07 (3H, s, Ac), 3.81 (1H, ddd, J = 9.5, 5.0, 2.5 Hz, H-5'), 4.06 (1H, dd, J = 12.5, 2.5 Hz, H-6'₄), 4.29 (1H, dd, J = 12.5, 5.0 Hz, H-6'_b), 4.80 (1H, br s, H_a-17), 4.97 (1H, br s, H_b-17), 5.12 (1H, dd, J = 9.5, 9.0 Hz, H-4'), 5.20 (1H, dd, J = 9.0, 8.0 Hz, H-2'), 5.25 (1H, dd, J = 9.0, 9.0 Hz, H-3'), 5.73 (1H, d, J = 8.0 Hz, H-1').

Steviol-13-O- β -glucopyranoside 19- β -glucopyranosyl ester octaacetate (5a). Amorphous solid; ¹H NMR (CDCl₃): δ 0.80 (3H, s, Me), 1.16 (3H, s, Me), 1.99 (6H, s, Ac), 2.01 (3H, s, Ac), 2.03 (9H, s, Ac), 2.08 (6H, s, Ac), 3.75 (1H, ddd, J = 10.0, 5.5, 2.5 Hz, H-5^{'''}), 3.82 (1H, ddd, J = 9.5, 4.5, 2.5 Hz, H-5'), 4.11 (1H, dd, J = 12.0, 2.5 Hz, H-6^{'''}), 4.13 (1H, dd, J = 12.0, 2.5 Hz, H-6^{'''}), 4.13 (1H, dd, J = 12.0, 4.5 Hz, H-6^{'''}), 4.18 (1H, dd, J = 12.0, 5.5 Hz, H-6^{'''}), 4.28 (1H, dd, J = 12.0, 4.5 Hz, H-6^{'''}), 5.01 (1H, br s, H₄-17), 5.00 (1H, dd, J = 9.0, 8.0 Hz, H-2^{'''}), 5.01 (1H, br s, H₆-17), 5.02 (1H, dd, J = 10.0, 9.0 Hz, H-4^{'''}), 5.15 (1H, dd, J = 9.0, 9.0 Hz, H-3''), 5.75 (1H, d, J = 8.0 Hz, H-1'').

Steviol 19- β -gentiobiosyl ester heptaacetate (**6a**). Amorphous solid; ¹H NMR (CDCl₃): δ 0.87 (3H, s, Me), 1.17 (3H, s, Me), 1.99 (6H, s, Ac), 2.01 (3H, s, Ac), 2.02 (6H, s, Ac), 2.09 (3H, s, Ac), 2.14 (3H, s, Ac), 3.60–3.69 (2H, m, H-6'_a, H-5''), 3.75–3.83 (2H, m, H-5', H-6'_b), 4.11 (1H, dd, J = 12.0, 2.5 Hz, H-6''_a), 4.24 (1H, dd, J = 12.0, 4.5 Hz, H-6''_b), 4.53 (1H, d, J = 8.0 Hz, H-1''), 4.81 (1H, br s, H_a-17), 4.93 (1H, dd, J = 9.5, 9.0 Hz, H-4'), 4.96 (1H, dd, J = 9.0, 8.0 Hz, H-2''), 4.98 (1H, br s, H_a-17), 5.04 (1H, dd, J = 9.5, 9.0 Hz, H-4''), 5.14 (1H, dd, J = 9.0, 9.0 Hz, H-3''), 5.15 (1H, dd, J = 9.0, 8.0 Hz, H-2'), 5.22 (1H, dd, J = 9.0, 9.0 Hz, H-3'), 5.68 (1H, d, J = 8.0 Hz, H-1').

Acknowledgements - The authors are grateful to Maruzen Kasei Co., Ltd. for kindly providing crude stevioside. This work was supported in part by a grant from the Ministry of Education, Science and Culture, Japan.

REFERENCES

- 1. Handro, W. and Ferreira, C. M. (1989) in Biotechnology in Agriculture and Forestry Vol. 7 Medicinal and Aromatic Plants 11 (Bajaj, Y. P. S., ed.), p. 468. Springer, Berlin.
- 2. Furuya, T., Orihara, Y. and Hayashi, C. (1987) Phytochemistry 26, 715.
- 3. Furuya, T., Orihara, Y. and Miyatake, H. (1989) J. Chem. Soc., Perkin Trans. I 1711.
- 4. Orihara, Y., Miyatake, H. and Furuya, T. (1991) Phytochemistry 30, 1843.

- 5. Orihara, Y. and Furuya, T. (1990) Phytochemistry 29, 3123.
- 6. Furuya, T., Orihara, Y., Koge, K. and Tsuda, Y. (1989) Plant Tiss. Cult. Letters 6, 148.
- 7. Furuya, T., Ushiyama, M., Asada, Y., Yoshikawa, T. and Orihara, Y. (1988) Phytochemistry 27, 803.
- 8. Kaneda, N., Kasai, R., Yamasaki, K. and Tanaka, O. (1977) Chem. Pharm. Bull. 25, 2466.
- Tanaka, T., Kohda, H., Tanaka, O., Chen, F.-H., Chou, W.-H. and Leu, J.-L. (1981) Agric. Biol. Chem. 45, 2165.
- Darise, M., Mizutani, K., Kasai, R., Tanaka, O., Kitahata, S., Okada, S., Ogawa, S., Murakami, F. and Chen, F.-H. (1984) Agric. Biol. Chem. 48, 2483.
- 11. Murashige, T. and Skoog, F. (1962) Physiol. Plant. 15, 473.