New Synthesis of α -Nitroso Esters and Oximes of α -Keto Esters

Syed Masarrat Ali, Yoshihiko Matsuda, Shigeo Tanimoto*

Institute for Chemical Research, Kyoto University, Uji, Kyoto 611, Japan

Ketene O-alkyl O'-silyl acetals on reaction with nitric oxide or isoamyl nitrite in the presence of titanium(IV) chloride provide either one of α -nitroso esters and oximes of α -keto esters.

It is well known that ketene O-alkyl O'-silyl acetals $\mathbf{1}$ are synthetically useful intermediates for the preparation of α -substituted carboxylic esters.¹⁻³ In this communication we report our findings concerning reactions of $\mathbf{1a}$ - \mathbf{g} with nitric oxide and with isoamyl nitrite in the presence of titanium(IV) chloride. These reactions seem to provide a relatively direct way to introduce a nitrogen substituent at the α -carbon atom of carboxylic esters. Recently, the radical nitrosation using nitric oxide leading to the formation of a carbon–nitrogen bond has been reported.⁴ On the other hand, the mode of reaction using alkyl nitrites is not clear though the radical character of alkyl nitrites has been proposed thirty years ago by Kharasch and co-workers.⁵

In the present reactions, the structure of products obtained depended not on the attacking reagent used, but on the presence or absence of α -hydrogen in the starting substrates 1 a - g. Thus, the products obtained from ketene O-alkyl O'-silyl acetals such as 1 a - c having no α -hydrogen were the corresponding α -nitroso esters 4 a - c; on the other hand, those obtained from ketene O-alkyl O'-silyl acetals such as 1 d - g having α -hydrogen were the oximes of α -keto esters (5 d - g), which were brought about by tautomerization of the intermediate α -nitroso esters 4 d - g. The structures of these products were confirmed by high-resolution mass spectrometry, IR spectra, and 1H -NMR spectra.

The reactions using nitric oxide provided mainly the dimers of intermediate radical species 3 if titanium(IV) chloride was added prior to nitric oxide to the starting substrate.⁶ This means that the reaction proceeds via a radical process and that the rate of reaction of 3 with nitric oxide is faster than dimerization. On the

Table. α-Nitroso Esters 4 and Oximes of α-Keto Esters 5 Prepared

Ketene Acetal	Reagent	Prod- uct ^a	Yield ^b (%)	mp° (°C)	Molecular Formula ^d or Lit. mp (°C)	IR (Nujol) ^e v (cm ⁻¹)	1 H-NMR (CDCl ₃) $^{\mathrm{f}}$ δ , J (Hz)
1a	NO	4a	68	81-83	897	2920, 1740, 1560	1.21 (t, 3 H, J = 7); 1.62 (s, 6 H); 4.20 (q, 2 H, J = 7)
	i-C ₅ H ₁₁ ONO		75	82 - 83			
1 b	NO	4b	72	78	C ₇ H ₁₃ NO ₃ (159.2)	2935, 1735, 1520	0.88 (t, 3 H, J = 7); 1.24 (t, 3 H, J = 7); 1.57 (s, 3 H); 2.15 (q, 2 H, J = 7); 4.18 (q, 2 H, J = 7)
	i-C ₅ H ₁₁ ONO		75	77			',
1 c	NO	4c	65	170	$C_{15}H_{13}NO_3$ (255.3)	3020, 2910, 1740 1610, 1535	3.71 (s, 3 H); 7.28 (m, 10 H)
	i-C ₅ H ₁₁ ONO		65	170	()	,	
1 d	NO	5d	65	93	95 ⁸	3240, 2930, 1720, 1670	1.23 (t, 3 H, $J = 7$); 2.12 (s, 3 H); 4.32 (q, 2 H, $J = 8$); 9.71 (br s, 1 H)
	i-C ₅ H ₁₁ ONO		70	93-94			0 0), > (0. 5, 1.1.)
1 e	NO	5e	68	39	$C_7H_{13}NO_3$ (159.2)	3300, 2960, 1725, 1630	0.96 (t, 3 H, <i>J</i> = 7); 1.26 (t, 3 H, <i>J</i> = 7); 1.52 (m, 2 H); 2.49 (t, 2 H, <i>J</i> = 7); 2.23 (q, 2 H, <i>J</i> = 7); 10.18 (br s, 1 H)
	i-C ₅ H ₁₁ ONO		70	39-40			7), 10/10 (01 3, 111)
1f	NO	5f	70	48-49	$C_7H_{13}NO_3$ (159.2)	3350, 2980, 1730, 1600	1.23 (m, 9H); 3.42 (m, 1H); 4.24 (q, 2H, J = 7); 9.88 (br s, 1H)
	i-C ₅ H ₁₁ ONO		75	48-49	()		.,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
1 g	NO	5g	65	44-45	429	3250, 2950, 1720, 1640	0.86 (t, 3 H, <i>J</i> = 7); 1.31 (t, 3 H, <i>J</i> = 7); 1.49 (m, 4 H); 2.59 (t, 2 H, <i>J</i> = 8); 4.27 (q, 2 H, <i>J</i> = 7); 10.10 (br s, 1 H)
	i-C₅H ₁₁ ONO		70	45			- 1), 10.10 (b) 3, 111)

- ^a For nitroso compounds **4a-c**, which are light-green crystalline solids, the IR bands in the region 1520-1560 cm⁻¹ support the monomeric form. Also, the mass spectral data support the monomeric form. The simplicity of the ¹H-NMR data of **5d-g** as well as the observation that their IR spectra indicate a relatively sharp peak at 3240-3350 cm⁻¹ are suggestive of simple isomers. Probably, the compounds **5d-g** possess the Z geometry, such that intramolecular hydrogen bonds are possible.
- ^b Yield of product isolated by column chromatography.
- ^c Recrystallized from hexane.
- ^d Satisfactory microanalyses obtained: C ±0.25, H +0.31, N +0.29.
- e Recorded on a JASCO IR-810 spectrophotometer.
- f Measured at a 200 MHz instrument using TMS as internal standard.

other hand, we have no evidence for that the reactions using isoamyl nitrite also proceed similarly via a radical process. In view of the initially mentioned report by Kharasch and coworkers, 5 however, the results using isoamyl nitrite also seem to be accommodated by assuming radical intermediates.

Reaction of Ketene O-Alkyl O'-Silyl Acetals (1 a-g) with Nitric Oxide in the Presence of Titanium(IV) Chloride; General Procedure:

Nitric oxide is bubbled through a stirred and cooled $(0-5^{\circ}\text{C})$ solution of ketene *O*-alkyl *O'*-silyl acetal 1 (5 mmol) in CH_2Cl_2 (20 mL) for 30 min. TiCl_4 (0.55 mL, 5 mmol) is then added dropwise, and stirring is continued for 4 h. The reaction mixture is diluted with water (30 mL)

and extracted with CH_2Cl_2 (3×30 mL). The organic extracts are dried (MgSO₄) and concentrated *in vacuo*. The residue is subjected to flash chromatography on silica gel using EtOAc/hexane (1:1) as eluent.

Reaction of Ketene O-Alkyl O-Silyl Acetals (1 a - g) with Isoamyl Nitrite in the Presence of Titanium(IV) Chloride; General Procedure:

To a stirred and cooled (10°C) solution of ketene *O*-alkyl *O'*-silyl acetals 1 (5 mmol) and isoamyl nitrite (0.88 g, 7.5 mmol) in CH_2Cl_2 (20 mL) is added dropwise TiCl_4 (0.55 mL, 5 mmol). The reaction mixture is then stirred at room temperature for 24 h and diluted with cold water (30 mL). The organic layer is separated, and the aqueous layer is extracted with CH_2Cl_2 (3×30 mL). The combined organic extract is dried (MgSO₄) and concentrated *in vacuo* to afford a residue, which is subjected to flash chromatography on silica gel using EtOAc/hexane (1:1) as eluent.

One of us (S.M.A.) is grateful to Monbusho (Ministry of Education, Japan) for financial support.

Received: 29 February 1988; revised: 21 June 1988

- (1) Brownbridge, P. Synthesis 1983, 85; and references cited therein.
- (2) Torii, S., Inokuchi, T., Misima, S., Kobayashi, T. J. Org. Chem. 1980, 45, 2731.
- (3) Rubbottom, G.M. Mott, R.C. J. Org. Chem. 1979, 44, 1731.
- (4) Okamoto, T., Kobayashi, K., Oka, S., Tanimoto, S. J. Org. Chem. 1987, 52, 5089.
- (5) Kharasch, M.S., Meltzer, T.H., Nudenberg, W. J. Org. Chem. 1957, 22, 37.
- (6) Inaba, S., Ojima, I. Tetrahedron Lett. 1977, 23, 2009.
- (7) Piloty, O., Graf Schwerin, B. Ber. Dtsch. Chem. Ges. 1901, 34, 1863.
- (8) Sharratt, E., Wardlaw, W. J. Chem. Soc. 1936, 563.
- (9) Hicks, C.S. J. Chem. Soc. 1918, 554.