## EFFICIENT ENZYMATIC PREPARATION OF (+)- AND (-)-COREY LACTONE DERIVATIVES

Tsutomu SUGAHARA, Ikuko SATOH, Osamu YAMADA, and Seiichi TAKANO\* Pharmaceutical Institute, Tohoku University, Aobayama, Sendai 980, Japan

Two pairs of Corey lactone derivatives, (+)-1, (-)-2 and (+)-3, (-)-4 have been efficiently prepared in high optical purity by enzymatic esterification and enzymatic hydrolysis catalyzed by lipases from *Pseudomonas sp*.

**KEYWORDS** Corey lactone; lipase PS; lipase AK; enzymatic transesterification; enzymatic hydrolysis

Prostaglandins and prostacyclins are important biologically active compounds and a number of synthetic methods of preparing them are reported.  $^{1,2)}$  The (-)-Corey lactone derivative is one of the most important key intermediates in the synthesis of prostaglandins, prostacyclins and their derivatives. (-)-Corey lactone derivatives are mode by numerous methods such as the optical resolution method, the asymmetric Diels-Alder method, and so on, but there are some problems including high cost of reagents for optical resolution and/or, long reaction steps.  $^{1)}$  Recently enzymatic resolution of prochiral substrates is a well established procedure for the preparation of enantiomerically pure products.  $^{3)}$  We report here a more convenient preparation of (+)- and (-)-Corey lactones based on a lipase-catalyzed transesterification of ( $\pm$ )-1 and enzymatic hydrolysis of ( $\pm$ )-3 (Chart).  $^{4)}$ 

First, we studied the enzymatic transesterification of ( $\pm$ )-Corey lactone diol 1.5) After several experiments using lipases in organic solvent, (+)-Corey lactone diol 1 and (-)-Corey lactone acetate 2 were obtained at  $\geq 99\%$  ee<sup>6</sup>) in good yield respectively, using lipase AK (Amano, *Pseudomonas sp.*) and vinyl acetate as the acylating reagents.<sup>7</sup>)

Next, we tested the enzymatic hydrolysis of  $(\pm)$ -Corey lactone acetate 3.8) Treatment of  $(\pm)$ -3 with lipase PS (Amano, *Pseudomonas sp.*) in 0.1 M phosphate buffer pH 7.6 at 30 °C for 48 h gave (+)-acetate 3 and (-)-alcohol 4 both with  $\geq 99\%$  ee<sup>9</sup>) in good yield.<sup>10</sup>)

In summary, efficient and expeditious routes for the preparation of both enantiomers of Corey lactone derivatives,  $(\pm)-1$ ,  $(\pm)-3$  under exceptionally mild and easy conditions are reported. The use of these optically pure Corey lactone derivatives in the synthesis of didemnenone C, D and marine prostanoids is currently under investigation.  $(\pm)$ 

© 1991 Pharmaceutical Society of Japan

**ACKNOWLEDGEMENT** We thank Amano Pharmaceutical Co. LTD. for supplying us with the lipase AK and PS.

## **REFERENCES AND NOTES**

- 1) a) A. Mitra, "The Synthesis of Prostaglandins", John Wiley & Sons, 1977; b) S. M. Roberts and F. Scheinmann, "New Synthetic Routes to Prostaglandins and Thromboxanes," Academic Press, 1982.
- 2) S. Ikegami and M. Shibasaki, J. Syn. Org. Chem. Jpn., 38, 1037 (1980); F. Hirata, ibid., 41, 178 (1983).
- 3) a) C-S. Chen and C. J. Sih, Angew. Chem. Int. Ed. Engl., 28, 695 (1989); b) R. Scheffold, "Modern Synthetic Methods," Vol. 5, pp 1-114, Springer-Verlag, 1989; c) M. Murata, S. Ikoma and K. Achiwa, Chem. Pharm. Bull., 38, 2329 (1990); d) Z. -F. Xie, H. Suemune and K. Sakai, Tetrahedron Asymmetry, 1, 395 (1990), and references cited therein.
- 4) Only one example of the diastereomeric separation of (±)-Corey lactone benzoate by enzymatic resolution is reported; K. Petzoldt, H. Dahl, W. Skuballa and M. Gottwald, *Liebigs Ann. Chem.*, 1990, 1087.
- 5) The requisite precursor, (±)-diol 1 was prepared by the methods in the literature: a) P. A. Grieco, J. Org. Chem., 37, 2362 (1972); b) E. J. Corey and J. Mann, J. Am. Chem. Soc., 95, 6832 (1973); c) I. Tömösközi, L. Gruber, G. Kovács, I. Székely and V. Simonidesz, Tetrahedron Lett., 1976, 4639.
- 6) The enantio excess of (+)-1 was determined by the comparison of the NMR spectrum (500 MHz) of the (+)-mono-Mosher ester of its primary alcohol

2760 Vol. 39, No. 10

with the corresponding (+)-mono-Mosher ester of  $(\pm)$ -1. And the enantio excess of (-)-2 was also determined by the comparison of the NMR spectrum (500 MHz) of its (+)-Mosher ester with the (+)-Mosher ester of  $(\pm)$ -2, which was prepared from  $(\pm)$ -1.

- 7) 109 mg of (±)-1, vinyl acetate (10 eq., 0.59 ml) and 100 mg lipase AK in CH<sub>2</sub>Cl<sub>2</sub> were stirred at r.t. for 3 h. After filtration of the enzyme, the products were separated by silica gel column chromatography.
- 8) ( $\pm$ )-Acetate 3 was prepared by selective silvlation of ( $\pm$ )-1 followed by acetylation.
- 9) (+)-3 was converted to (+)-5 by acid treatment prior to derivatization.

The enantio excess of (+)-3 and (-)-4 was determined by the comparison of the NMR spectrum (500 MHz) of their (+)-Mosher esters of (+)-5 with (-)-4 and the (+)-Mosher esters of ( $\pm$ )-5 with ( $\pm$ )-4, which were prepared from ( $\pm$ )-3.

- 10) (±)-3, 2.3 g, and lipase PS, 1.15 g, were suspended in 230 ml phosphate the buffer and the mixture was stirred at 30 °C for 48 h. After filtration of the enzyme, the products were extracted with AcOEt. (+)-3 and (-)-4 were obtained by silica gel column chromatography.
- 11) All compounds have been fully characterized by  ${}^{1}H$  NMR and MS spectrum. Data for optical rotations are as follows:  $[\alpha]_{D} + 31.6^{\circ}$  (c 0.688; MeOH) (+)-1 [lit., ${}^{5c}$ ) [ $\alpha$ ]<sub>D</sub> -43.4° (c 1.46, MeOH) for (-)-1] and -16.4° (c 1.158, CHCl<sub>3</sub>) (-)-2 [lit., ${}^{13}$ ) [ $\alpha$ ]<sub>D</sub> -17.9° (c 0.518, CHCl<sub>3</sub>)]; [ $\alpha$ ]<sub>D</sub> +48.0° (c 1.016, CHCl<sub>3</sub>) (+)-3 [lit., ${}^{13}$ ) [ $\alpha$ ]<sub>D</sub> -47.4° (c 1.294, CHCl<sub>3</sub>) for (-)-3] and -14.2° (c 1.008, CHCl<sub>3</sub>) (-)-4 [lit., ${}^{13}$ ) [ $\alpha$ ]<sub>D</sub> -15.3° (c 1.004, CHCl<sub>3</sub>)].
- 12) For earlier application of optically active Corey lactone in natural products synthesis, see; T. Sugahara, T. Ohike, M. Soejima, and S. Takano, J. Chem. Soc., Perkin Trans. 1, 1990, 1824.
- 13) (-)-2, (-)-3 and (-)-4 were synthesized respectively from authentic (-)-6, which was supplied by NISSAN Chemical Industry Ltd.

(Received August 5, 1991)