JATROPHAM GLUCOSIDE FROM THE BULBS OF LILIUM HANSONII

HIROKO SHIMOMURA, YUTAKA SASHIDA, YOSHIHIRO MIMAKI and YUKO MINEGISHI

Tokyo College of Pharmacy, 1432-1, Horinouchi, Hachioji, Tokyo 192-03, Japan

(Received 22 May 1986)

Key Word Index—Lilium hansonii; Liliaceae; jatropham; jatropham 5-O- β -D-glucopyranoside; (\pm)-5-O-methyljatropham; antitumour alkaloid.

Abstract—From the methanolic extract of the fresh bulbs of *Lilium hansonii*, a new glucoside, jatropham 5-0- β -D-glucopyranoside, was isolated together with jatropham and (\pm) -5-0-methyljatropham.

Recently, in the course of our studies on the constituents of *Lilium* plants, we focused on *Lilium* hansonii Leichtl. and isolated a new glucoside, jatropham 5-O- β -D-glucopyranoside (2) together with jatropham (1) and (\pm)-5-O-methyljatropham (3).

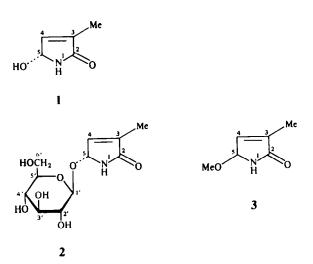
Compound 1 was identified as jatropham by its spectroscopic properties and by comparison with published data [1-4]. The absolute configuration of jatropham at C-5 had not been determined until our examination. We identified it as R by comparison of the CD spectrum of 1 with that of (R)-dihydromaleimide, showing positive Cotton effects in the $n \rightarrow \pi^*$ region [5].

Compound 2 was suggested to be a glucoside of 1 by its ¹H NMR and ¹³C NMR spectra. Acetylation of 2 with acetic anhydride-pyridine gave a tetraacetate. Enzymatic hydrolysis of 2 with β -glucosidase afforded 1 and D-glucose, and furthermore the ¹H NMR spectrum of 2 exhibited a signal of one anomeric proton [$\delta 5.12$ (1H, d, J = 7.8 Hz)], indicating the presence of a β -glucopyranoside linkage. Compound 2 was therefore confirmed to be jatropham 5-O- β -D-glucopyranoside.

Compound 3 was identified as (\pm) -5-O-methyljatropham by its spectral data (IR, MS, ¹H NMR and ¹³C NMR spectra). There has been no report on the isolation of 3, but it is uncertain whether 3 is a natural product or an artefact because it was obtained as a racemate different from the cases of 1 and 2.

Jatropham (1) is known as an antitumour alkaloid isolated from Jatropha macrorhiza (Euphorbiaceae) [1] and it has not been isolated from other natural sources. In this investigation, 1 and its glucoside (2) were obtained in good yields. Compound 1 was the first antitumour alkaloid obtained from the Lilium plant, and 2 is also expected to show tumour-inhibitory properties.

EXPERIMENTAL


Fresh dormant bulbs of L. hansonii (4.5 kg), purchased from Heiwaen Co. (Nara Prefecture in Japan), were extracted twice with hot MeOH. The MeOH soln was concentrated to a small vol. under red. pres., and the residue was suspended in H_2O . This suspension was extracted successively with CHCl₃ and *n*-BuOH. The *n*-BuOH soluble fraction was repeatedly chromatographed on silica gel and Sephadex LH-20 to afford 1-3.

Compound 1. 1.6 g, colourless needles (CHCl₃-MeOH), mp 119- 123°, $[\alpha]_{25}^{D}$ - 76.2° (MeOH; c 1.00) (Found: C, 52.93; H,

6.22; N, 12.31. Calc. for $C_5H_7NO_2$: C, 53.09; H, 6.24; N, 12.38 %). CD (MeOH; c 0.02) nm (θ): 248 (+ 6544); UV λ_{max}^{MeOH} nm (log ε): 206 (4.30), 240 sh (3.25); IR $\nu_{max}^{CHC1_3}$ cm⁻¹: 3400, 3250, 1705, 1650; EIMS m/z: 113 [M]⁺, 98, 85, 69, 41; ¹H NMR (90 MHz, CD₃OD): δ 6.62 (1H, m, H-4), 5.43 (1H, m, H-5), 1.63 (3H, m, Me); ¹³C NMR (100.6 MHz, CD₃OD) : δ 175.3 (C-2), 143.0 (C-4), 136.8 (C-3), 79.8 (C-5), 10.4 (Me).

Compound 2. 5.0 g, colourless needles (CHCl₃-MeOH), mp 178-183°, $[\alpha]_D^{25} - 15.6^{\circ}$ (MeOH; c 1.00); IR v $\frac{\text{KBr}}{\text{max}}$ cm⁻¹: 3400, 1687, 1650; EIMS m/z: 276 [M + 1]⁺, 245, 208, 131; ¹H NMR (400 MHz, C₃D₃N): δ 6.76 (1H, m, H-4), 5.89 (1H, m, H-5), 5.12 (1H, d, J = 7.8 Hz, H-1'), 4.52-3.92 (6H, H-2', 3', 4', 5', 6'), 1.64 (3H, m, Me); ¹³C NMR (100.6 MHz, DMSO-d_6): δ 172.2 (C-2), 138.8 (C-4), 135.5 (C-3), 101.8 (C-1'), 84.3 (C-5), 77.2 (C-3'), 76.5 (C-5'), 73.2 (C-2'), 70.0 (C-4'), 61.1 (C-6'), 10.0 (Me).

Acetylation of compound 2. Compound 2 (62 mg) was acetylated with AC₂O-pyridine for 24 hr at room temp. to give the corresponding tetraacetate, which was purified by silica gel CC to yield colourless needles (EtOH), 69 mg, mp 176-178°; IR ν_{max}^{BB} cm⁻¹: 3220, 1775, 1712, 1650; EIMS m/z: 443 [M]⁺, 347, 245, 200, 139, 97; ¹H NMR (90 MHz, CDCl₃): δ 7.15 (1H, br, NH), 6.55 (1H, m, H-4), 5.48 (1H, m, H-5), 4.68 (1H, d, J = 7.5 Hz, H-1'), 5.23-3.60 (6H, H-2', 3', 4', 5', 6'), 2.08, 2.03, 1.99, 1.93 (each 3H, s, OCOMe), 1.85 (3H, m Me).

Short Reports

Enzymatic hydrolysis of compound 2. A mixture of 2 (100 mg) and β -glucosidase (10 mg) was incubated in HOAc-NaOAc buffer (pH 5) at 37° for 30 hr, and then, after addition of H₂O, it was extracted with *n*-BuOH. The extract was chromatographed on silica gel to give colourless needles (CHCl₃-MeOH), 14 mg, mp 107-112°, $[\alpha]_D^{23} - 76.5^\circ$ (MeOH c 0.16), identical with compound 1 in terms of TLC (R_f 0.40; CHCl₃-MeOH, 8:1), IR and ¹H NMRspectra. From the H₂O layer, D-glucose was obtained and identified by TLC (R_f 0.36; *n*-BuOH-Me₂CO-H₂O, 4:5:1).

Compound 3. 230 mg, colourless syrup, $[\alpha]_{D}^{25} \pm 0^{\circ}$ (MeOH; c 0.40); CD: showing no Cotton effect; IR $v_{max}^{CHCl_3}$ cm⁻¹: 3250, 3020, 1705, 1654; EIMS m/z: 127 [M]⁺, 112, 96, 31; ¹H NMR (90 MHz, CDCl₃): δ 7.69 (1H, br, NH), 6.54 (1H, m, H-4), 5.39 (1H, m, H-5), 3.27 (3H, s, OMe), 1.63 (3H, s, Me); ¹³C NMR (100.6 MHz, CDCl₃): δ 173.7 (C-2), 138.7 (C-4), 138.1 (C-3), 84.5 (C-5), 52.7 (OMe), 10.6 (Me).

REFERENCES

- 1. Wiedhopf, R. M., Trumbull, E. R. and Cole, J. R. (1973) J. Pharm. Sci. 62, 1206.
- Yakushijin, K., Kozuka, M., Ito, Y., Suzuki, R. and Furukawa, H. (1980) Heterocycles 14, 1073.
- 3. Yakushijin, K., Suzuki, R., Hattori, R. and Furukawa, H. (1981) Heterocycles 16, 1157.
- 4. Nagasaka, T., Esumi, S., Ozawa, N., Kosugi, Y. and Hamaguchi, F. (1981) Heterocycles 16, 1987.
- Masuko, M., Miyamoto, K., Sakurai, K., Iino, M., Takeuchi, Y. and Hashimoto, T. (1983) *Phytochemistry* 22, 1278.

Phytochemistry, Vol. 26, No. 2, pp 583-584, 1987 Printed in Great Britain

0031-9422/87 \$3.00 + 0.00 © 1987 Pergamon Journals Ltd.

THALIFABORAMINE, A DIMERIC APORPHINOID ALKALOID FROM THALICTRUM FABERI

LONG-ZE LIN, SHU-FANG LI* and HILDEBERT WAGNER[†]

Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; *Shanghai Second Polytechnic University, Shanghai, China; †Institut für Pharmazeutische Biologie der Universität München, West Germany

(Revised received 20 May 1986)

Key Word Index-Thalictrum faberi; Ranunculaceae; alkaloid; thalifaboramine.

Abstract—A new dimeric aporphinoid alkaloid thalifaboramine was isolated from the roots of *Thalictrum faberi*. The structure of the compound was established by spectral analysis.

INTRODUCTION

Thalictrum faberi Ulbr., a plant native to China, is used in Chinese folk medicine as an antiphlogistic, antibacterial and, recently, in the treatment of stomach cancer. Over 16 new aporphine-benzylisoquinoline dimers were isolated from the plant [1, 2], and the crude base as well as most of the new alkaloids have shown cytotoxicity against P-388 carcinoma cell [J.-L. Yang, unpublished results]. One of them is thalifaboramine, and now, we present its isolation and structural determination in this report.

RESULTS AND DISCUSSION

Extraction and work-up of 10 kg of the dried powdered roots of the plant yielded 24 mg of thalifaboramine (1) as a yellow amorphous solid, $C_{39}H_{44}O_7N_2$. The mass spectrum of the compound shows a small [M]⁺ at m/z 652 and a base peak at m/z 206 due to facile formation of the dihydroisoquinolinium cation **a** through cleavage of the C-1' to C-a' bond, which suggests two OMe groups at the isoquinoline part. The NMR spectrum (CDCl₃, FT 400 MHz), outlined around structure 1, shows a characteristic AA'BB' quartet (J = 8.9 Hz), typical of the four symmetric protons of the C-ring of the benzylisoquinoline moiety. It follows that the remaining C-12' site should be the terminus of the diaryl ether bridge in this mojety. The NMR spectrum also shows the presence of two N-Me groups, five OMe groups, four other aromatic protons and one phenolic group ($\delta 6.95$, D₂O exchangeable). The UV spectrum shows 17 nm of bathochromic shift with hyperchromism in strong base, suggesting that the phenolic function at the C-3 or C-9 position of the aporphine moiety [3]. In order to assign the NMR signals, an NOE difference study of the alkaloid was undertaken, and the results have been summarized in structure 1A. There is a significant (3.9 or 5.7%) enhancement of H-3 signal upon irradiation of the C-2 methoxyl, which serves to prove that the phenolic function cannot be at the C-3 position. Similarly, the 8.4% NOE, shown by H-11 upon irradiation of the C-10 methoxyl, proves that the diaryl ether terminal cannot be at C-10. Therefore, the phenolic group must be at the C-9 position.