TRITERPENOIDS FROM THE FUNGUS GANODERMA LUCIDUM

TSUYOSHI NISHITOBA, HIROJI SATO and SADAO SAKAMURA

Department of Agricultural Chemistry, Faculty of Agriculture, Hokkaido University, Sapporo 060, Japan

(Received 26 August 1986)

Key Word Index—Ganoderma lucidum; Polyporaceae; triterpenoids; ganoderic acid; ganoderenic acid; lucidenic acid; lucidone.

Abstract—Ten novel components, ganoderic acid, ganoderenic acid and lucidenic acid derivatives, were isolated from the fruiting body of the fungus Ganoderma lucidum. Their structures were elucidated mainly by spectroscopic and chemical methods.

INTRODUCTION

Ganoderma lucidum is well known as a crude drug in China and Japan, and its fruiting body contains large amounts of highly oxidized triterpenoids [1-13]. In this paper, we describe the structures of the novel minor components, ganoderic acids M, N and O, ganoderenic acid E and lucidenic acids H, I, J, K, L and M, along with the identification of ganoderic acid H [8] (also reported as ganoderic acid C in ref. [10] and revised as ganoderic acid D in ref. [12]), K [13], compound B9 [13] and lucidenic acids E₂ (reported as lucidenic acid E in ref. [8]).

RESULTS AND DISCUSSION

The acidic part of the chloroform layer from the ethanol extract of G. lucidum was separated into several fractions by silica gel column chromatography and reverse-phase LC. Some of the fractions were methylated with diazomethane and subjected to silica gel column chromatography, prep. TLC, reverse-phase LC and/or HPLC to give the methyl esters of 14 triterpenoid acids (1-14).

Compound 1, methyl ganoderate M ([M]⁺, m/z 544), was assigned the molecular formula $C_{31}H_{44}O_8$ by HRMS. Its ¹H NMR spectrum was very similar to that of ganoderic acid D [2] (Table 1), but the configuration of the hydroxyl group at C-12 was indicated to be α from the chemical shift of H-12 (δ 3.78, s) cf. ¹H NMR spectra of lucidenic acid E [2]. Thus, the structure of 1 was determined to be methyl 7 β ,12 α -dihydroxy-3,11,15,23tetraoxo-5 α -lanost-8-en-26-oate.

Compound 2, methyl ganoderate N, showed a molecular ion peak at m/z 544 by both FDMS and EIMS, although its relative intensity was very weak (0.06%) in EIMS. Its molecular formula was assigned as $C_{31}H_{44}O_8$ by HRMS. Its ¹³C (Table 2) and ¹H NMR (Table 1) spectra resembled those of ganoderic acid C₁ [1, 3] (reported as ganoderic acid C in refs [1] and [3]). However, the signal at δ 72.9 (¹³C NMR) and singlet methyl group at δ 1.41 (¹H NMR) suggested the presence of an additional hydroxyl group at C-20. Thus the structure of methyl ganoderate N was established to be methyl 7 β ,20-dihydroxy-3,11,15,23-tetraoxo-5 α -lanost-8-en-26-oate (2). The weak intensity of the molecular ion

peak in EIMS is ascribable to a McLafferty rearrangement and consequent easy cleavage between C-20 and C-22 (Fig. 1). Alkaline treatment of 2 caused a *retro*-aldol condensation and the resulting cleavage between C-20 and C-22 to yield lucidone B (15) [2] (Fig. 2). These observations also supported the above structure for 2.

Compound 3, methyl ganoderate O, gave no molecular ion peak in EIMS, but gave it at m/z 542 in FDMS. Its ¹H NMR spectrum (Table 1) contained six singlet methyl signals and one doublet methyl signal at high field,

- (5a) $R_{1=0}^{-}OAc, R_{2=\alpha}^{-}OH, R_{3=}^{-}R_{5=}^{-}H, R_{4=\alpha}^{-}OAc$
- (5b) $R_1 = R_2 = R_4 = 0, R_3 = R_5 = H$
- (6) $R_{1}=B-OH, R_{2}=R_{4}=O, R_{3}=B-OAC, R_{5}=H$

н	1•	2†	3•	4*	5*	6†	7*
1α	1.82 ddd	1.47 ddd	1.79 ddd	1.30 m	1.17 ddd	1.18 <i>ddd</i>	
	(13.6, 8.7, 8.3)**	(13.6, 8.5, 8.5)	(14.1, 10.4, 5.9)		(13.7. 13.2, 3.4)	(13.6, 13.3, 5.8)	
18	2.89 ddd	2.95 m	3.0 m	2.84 ddd	3.00 ddd	2.73 ddd	2.79 ddd
-•	(13.6. 7.8. 5.9)			(12.7. 4.9. 4.9)	(13.7 3.4 3.4)	(13.6, 3.3, 3.3)	(13.2. 7.1. 4.2)
2a	2.50 ddd	2.50 m	2.46 ddd	1.70 m	1.65 m	1.70 m	2.41 ddd
	(15.1.83.7.8)		(156 88 59)				(156 66 42)
28	2 54 222	2.50	2 66 444	170 -	165 m	1.70	265 111
τp	$(151 \ 87 \ 59)$	2.50 m	(156 104 50)	1.70 m	1.05 m	1.70 m	(156 112 68)
3~	(13.1, 0.7, 3.5)	_	(15.0, 10.4, 5.7)	3 28 44	2 21 22	3 76 44	(15.0, 11.2, 0.0)
54		_		(11765)	(10.5.5.4)	(10.2 5 5)	_
5	1 74 22	1 66 22	7 49 22	1 64 22	1 20 22	(10.5, 5.5)	1 40 44
302	1.74 (44		2.40 84	1.34 44	1.30 aa	1.50 44	(12.7.2.0)
£	(13.7, 1.0)	(12.0, 1.1)	(14.7, 2.4)	(13.4, 4.4)	(13.2, 1.3)	(13.9, 2.9)	(13.7, 2.0)
σα	2.11 aaa	2.12 444	2.53 aa	2.55 44	1.80 m	2.57 44	2.20 aaa
	(13.2, 7.3, 1.0)	(12.6, /./, 1.1)	(13.2, 2.4)	(15.6, 4.4)		(14.3, 2.9)	(13.7, 8.6, 2.0)
6 µ	1.65 ddd	1.68 ddd	2.76 dd	2.59 dd	1.75 m	2.67 dd	1.79 ddd
_	(13.7, 13.2, 9.8)	(12.6, 12.6, 9.0)	(14.7, 13.2)	(15.6, 13.2)		(14.3, 13.9)	(13.7, 13.7, 8.6)
7α	4.85 dd,	4.84 dd	_	—	_	—	4.84 dd
	(9.8, 7.3)	(9.0, 7.7)					(8.6, 8.6)
7β	—		—	—	4.56 m	—	—
12α	—	2.77 d	3.25 d	2.83 d	2.77 dq	5.63 s	4.46 s
		(17.2)	(16.6)	(16.6)	(17.6, 1.0)		
12 <i>β</i>	3.78 s	2.85 d	3.12 d	2.53 d	2.39 d	—	—
		(17.2)	(16.6)	(16.6)	(17.6)		
15 β	_	_		4.34 dd	4.58 m	_	-
•				(7.3, 7.3)			
16a	2.73 dd	2.86 dd	3.0 m	1.85 m	1.90 m	2.77 dd	2.72 dd
	(22.5.8.3)	(19.4, 10.3)				(18.1, 9.9)	(20.0, 8.3)
168	2 11 dd	2.45 m	3.0 m	1.85 m	1.90 m	1.91 dd	2.56 dd
	(22.5.12.7)					(18.1, 8.2)	(20.0. 10.3)
17	273 m	225 dd	297 dd	185 m	1.90 m	(1000, 002)	3 32 dd
• ·		(10.9)	(8 3 8 3)	1.00	1.50		(10 3 8 3)
Me. 18	103 •	117 c	138 .	0.89 .	0.87 4	0.89 c	0.80 c
1416-10	1.05 5	1.17 5	1.50 3	0.07 3	(1.0)	0.07 5	0.00 5
Ma 10	115 c	1.26 .	132 -	114 .	106 c	133 .	144 .
20	1.15 s 2 19 m	1.20 3	1.52 3	200 -	2.00	1.55 5	1.44 3
20	2.10 m	1.41 .	1 (7)	2.00 m	2.00 m	6 00 J	2214
MC-21	1.09 4	1.41 5	1.07 \$	0.80 4	0.85 a	(6.2)	2.31 4
~~	(0.8)	2// 1	2.06	(0.4)	(0.4)	(0.2)	(1.0)
22	2.41 44	2.00 a	2.85 a	2.42 aa	2.38 44		0.15 a
	(16.1, 8.3)	(10.5)	(14.7)	(16.6, 2.4)	(16.1, 2.9)		(1.0)
22	2.37 dd	2.49 d	2.82 d	2.25 dd	2.25 dd		
	(6.1, 4.4)	(16.5)	(14.7)	(16.6, 9.7)	(16.1, 9.3)		
24	2.87 dd	2.95 m	3.0 m	2.82 dd	2.83 dd	2.83 dd	2.95 m
	(17.6, 8.3)			(17.7, 8.3)	(17.7, 8.6)	(17.2, 8.8)	
24	2.47 dd	2.45 m	2.70 dd	2.46 dd	2.46 dd	2.42 dd	2.53 m
	(17.6, 5.4)		(17.0, 4.0)	(17.7, 5.1)	(17.7, 5.4)	(17.2, 5.0)	
25	2.96 m	2.95 m	3.0 m	2.94 m	2.95 m	2.96 ddq (8.8, 5.0, 7.0)	2.95 m
Me-27	1.19 d	1.20 d	1.16 d	1.18 d	1.18 d	1.18 d	1.19 d
	(7.3)	(7.0)	(7.3)	(7.3)	(7.3)	(7.0)	(7.3)
Mc-28	1.10 s	1.11 s	1.06 s	1.03 s	1.05 s	1.03 s	1.13 s
Me-29	1.14 s	1.12 s	1.11 s	0.89 s	0.84 s	0.82 s	1.13 s
Me-30	1.32 s	1.34 s	1.92 s	1.29 s	1.27 s	1.73 s	1.51 s
COON	Ae 3.69 s	3.69 s	3.62 5	3.67 s	3.68 s	3.67 s	3.69 s
OAc-1	2 —	_				2.24 s	_

Table 1. ¹H NMR spectral data of compounds 1-7 [CDCl₃ or C₅D₅N(3), TMS as int. standard]

*Measured at 500 MHz.

†Measured at 270 MHz.

** Values in parentheses are coupling constants in Hz.

С	2	5	8	9	14
1	35.7 (2)**	35.2 (2)	35.4 (2)	36.7 (2)	33.3 (2)
2	34.3 (2)	28.9 (2)	28.3 (2)	27.9 (2)	27.4 (2)
3	217.8 (0)*	77.9 (1)	72.0 (1)	70.7 (1)	77.5 (1)
4	45.3 (0)	39.5 (0)*	43.0 (0)	43.6 (0)	40.4 (0)
5	49.4 (1)†	49.4 (1)	42.5 (1)	44.5 (1)	51.4 (1)
6	27.7 (2)	27.7 (2)	27.8 (2)	34.1 (2)	36.7 (2)
7	66.3 (1)	68.0 (1)	66.7 (1)	200.4 (0)	194.1 (0)
8	157.6 (0)	161.3 (0)	158.8 (0)	152.2 (0)	151.6 (0)
9	141.0 (0)	141.2 (0)	142.9 (0)	147.4 (0)	146.0 (0)
10	38.3 (0)	39.4 (0)*	39.2 (0)	40.8 (0)	39.1 (0)
11	197.6 (0)	199.6 (0)	198.3 (0)	199.8 (0)	198.9 (0)
12	50.5 (2)	52.8 (2)	51.1 (2)	49.9 (2)	79.4 (1)
13	46.8 (0)	47.8 (0)	45.6 (0)	44.5 (0)	48.0 (0)
14	59.7 (0)	54.2 (0)	59.2 (0)	57.6 (0)	58.5 (0)
15	216.8 (0)*	71.8 (1)	216.8 (0)	208.0 (0)	206.0 (0)
16	36.3 (2)	38.0 (2)	41.4 (2)	40.5 (2)	37.6 (2)
17	49.0 (1)†	46.9 (1)	46.2 (1)	45.5 (1)	45.5 (1)
18	19.3 (3)	17.4 (3)	17.8 (3)	16.4 (3)	12.1 (3)
19	18.1 (3)	17.8 (3)	19.2 (3)	18.6 (3)	18.0 (3)
20	72.9 (0)	33.0 (1)	35.4 (1)	35.5 (1)	33.0 (1)
21	26.7 (3)	19.4 (3)	18.1 (3)	18.2 (3)	20.2 (3)
22	52.7 (2)	49.7 (2)	31.0 (2)	31.0 (2)*	30.1 (2)
23	210.4 (0)	208.5 (0)	31.0 (2)	31.1 (2)*	31.7 (2)
24	47.7 (2)	46.9 (2)	174.0 (0)	174.0 (0)	173.7 (0)
25	34.5 (1)	35.1 (1)	66.6 (2)	65.1 (2)	27.9 (3)
26	175.9 (0)	176.2 (0)	13.2 (3)	13.1 (3)	15.6 (3)
27	17.0 (3)	17.2 (3)	24.8 (3)	21.6 (3)	21.4 (3)
28	27.0 (3)	28.8 (3)	_ `	_ ``	_ ``
29	20.8 (3)	16.8 (3)		—	
30	25.1 (3)	21.7 (3)	_	—	_
COOMe	52.0 (3)	51.6 (3)	51.4 (3)	51.4 (3)	51.6 (3)
12AcMe			_ `	_ `	20.8 (3)
12AcCO			_	_	170.1 (0)

Table 2. ¹³C NMR spectral data of compounds 2, 5, 8, 9 and 14 [67.8 MHz, CDCl₃ (2, 14) or C₅D₅N (5, 8, 9), TMS as int. standard]

*,†Assignments may be reversed.

** Number of bonded H in parenthesis.

however, it contained no signals for methine groups bearing a hydroxyl group. By analogy with methyl ganoderate N (2), alkaline treatment of 3 gave a *retro*aldol condensation product (16) (Fig. 2), which was also derived from lucidone B (15) on treatment with pyridinium dichromate (PDC) [16]. From these data, methyl ganoderate O was concluded to be methyl 3,7,11,15,24pentaoxo- 5α -lanost-8-en-26-oate (3).

Compound 4, $C_{31}H_{46}O_7$, gave a ¹H NMR spectrum (Table 1) similar to that of methyl ganoderate J [4], but the signal at $\delta 3.28$ (1H, dd, J = 11.7, 6.5) showed the presence of a β -hydroxyl group at C-3 instead of a carbonyl group. Thus, 4 was identified as methyl ganoderate K, whose structure had been presented by Kikuchi et al. [13].

Compound 5 was formulated as $C_{31}H_{48}O_7$ and its ¹³C NMR spectrum (Table 2) indicated the presence of three methine carbons each bearing a hydroxyl group (δ 77.9, 77.8 and 68.0). Its ¹H NMR spectrum (Table 1) also indicated the presence of three methine protons each bearing a hydroxyl group [δ 3.31 (1H, dd, J = 10.5, 5.4), 4.5–4.6 (2H, overlapped)]. Acetylation of 5 gave a diacetate (5a) as a major product, the ¹H NMR spectrum of

which showed the signals due to the above methine protons at δ 5.28 (1H, dd, J = 9.3, 5.7), 4.57 (1H, dd, J = 11.2, 5.3), and 4.31 (1H, m). The two signals at δ 5.28 and 4.57 indicated the presence of an α -acetoxyl group at C-15 and a β -acetoxyl group at C-3, respectively. On the other hand, the signal at δ 4.31 indicated the presence of an α -hydroxyl group at C-7, the presence of which was also observed in the mycelial components, ganoderic acids U, V and W [14, 15]. These observations indicated that 5 was an epimer at C-7 of methyl ganoderate C₂ (reported as ganoderic C in ref. [7] and as ganoderic acid D in ref. [8]) and was identical with 'Compound B9' [13], whose structure had been presented by Kikuchi *et al.* Furthermore, this structure was confirmed by oxidation of 5 with PDC to give a pentaketo compound (5b) [6].

Compound 6 exhibited a molecular ion peak at m/z 586 and was assigned the molecular formula $C_{33}H_{46}O_9$. Its ¹HNMR data (Table 1) entirely agreed with that of methyl ganoderate H [8, 10]. Thus, 6 was identified as methyl ganoderate H.

The molecular formula of compound 7, methyl ganoderate E, was determined to be $C_{31}H_{42}O_8$. Its UV spectrum contained an absorption maximum at 247 nm

Fig. 1. McLafferty rearrangement and consequent cleavage between C-20 and C-22 in the mass spectrum of compound 2.

(ε 11760). The large ε value of which indicated the presence of two α,β -unsaturated carbonyl groups. In the ¹H NMR spectrum of 7 (Table 1), the signals due to a olefinic methyl group at δ 2.31 (3H, d, J = 1.0) and 6.15 (1H, d, J = 1.0) suggested the presence of a *E*-double bond between C-20 and C-22 by analogy with ganoderenic acids A–D [11]. The signals at δ 4.84 (1H, dd, J = 8.6, 8.6) and 4.46 (1H, s) revealed the presence of 7β - and 12 β -hydroxyl groups. From these data, the structure of methyl ganoderenate E was concluded to be methyl 7β ,12 β -dihydroxy-3,11,15,23-tetraoxo- 5α -lanosta-8,20*E*-dien-26-oate (7).

Compound 8, methyl lucidenate H, was formulated as C₂₈H₄₂O₇. Its ¹³C NMR spectrum (Table 2) showed the presence of two methine carbons (δ 72.0, 66.7) and one methylene (δ 66.6) carbon which possessed the hydroxyl group, in addition to a carbonyl (δ 216.8), an α,β unsaturated carbonyl (δ 198.3, 158.8, 142.9) and an ester carboxyl (δ 174.0) group. In the ¹H NMR spectrum of 8 (Table 3), the signals at $\delta 4.30$ (1H, dd, J = 11.7, 5.5) and 5.25 (1H, dd, J = 7.5, 7.5) revealed the presence of 3β - and 7*β*-hydroxyl groups, and the AB-doublet signals at δ 4.24 (1H, d, J = 10.4) and 3.78 (1H, d, J = 10.4) indicated the presence of an α -hydroxymethyl group at C-4. These ¹HNMR data are in marked contrast with those of ganolucidic acid C [4], which possesses a β hydroxymethyl group at C-4. On the basis of these observations, the structure of methyl lucidenate H was to methyl 3β , 7β -dihydroxy- 4α concluded be hydroxymethyl-4 β ,14 α -dimethyl-11,15-dioxo-5 α -chol-8en-24-oate (8). This structure was confirmed by converting 8 into 8a by treating it with cupric sulphate-acetone. The ¹HNMR data of 8a (experimental) was in good agreement with that of the acetonide derived from a triterpene which has 3β -hydroxyl and 4α -hydroxymethyl groups [17].

- (8) R₁=R₃=9-OH,R₂=OH,R₄=H,R₅=O
- (8a) $R_{1} = = 0$, $R_{3} = 6 0H$, $R_{4} = H$, $R_{5} = 0$ $R_{2} = 0$
- (9) R₁₌B-OH, R₂=OH, R₃=R₅=O, R₄=H
- (10) $R_{1} = R_{4} = B OH, R_{2} = OH, R_{3} = R_{5} = O$
- (11) R₁=R₃=R₅=0, R₂=H, R₄=α-OH
- (12) R₁=R₄=8-OH, R₂=H, R₃=R₅=O
- (13) $R_{1}=B-OH, R_{2}=R_{4}=H, R_{3}=R_{5}=\alpha-OH$
- (14) R₁₌₈-OH, R₂₌H, R₃₌R₅₌O, R₄₌B-OAc

The molecular formula of compound 9, methyl lucidenate I, was assigned as $C_{28}H_{40}O_7$. By analogy with methyl lucidenate H (8), the ¹H NMR signals of 9 at δ 4.29 (1H, dd, J = 11.2, 5.3), 4.16 (1H, d, J = 10.8) and 3.61 (1H, d, J = 10.8) established the presence of 3β -hydroxyl and 4 α -hydroxymethyl groups, and the absence of a 7β hydroxyl group (Table 3). Moreover, the ¹³C NMR signal of 9 at δ 200.4 indicated the presence of a conjugated carbonyl group at C-7 (Table 2). Thus, the structure of methyl lucidenate I was established to be methyl 3β hydroxy-4 α -hydroxymethyl-4 β ,14 α -dimethyl-7,11,15trioxo-5 α -chol-8-en-24-oate (9).

Compound 10, methyl lucidenate J, $C_{28}H_{40}O_8$, had a ¹H NMR spectrum closely similar to that of methyl lucidenate I (9) (Table 3). However, a signal at δ 4.92 (1H, s) revealed the presence of an additional β -hydroxyl group at C-12. So, the structure of methyl lucidenate J was determined to be methyl 3β , 12β -dihydroxy- 4α hydroxymethyl- 4β , 14α -dimethyl-7, 11, 15-trioxo- 5α -chol-8-en-24-oate (10).

Compound 11, methyl lucidenate K, was formulated as $C_{28}H_{38}O_7$. Its ¹H NMR spectrum (Table 3) resembled that of lucidenic acid E_1 [2] and a signal at δ 3.94 (1H, s) indicated the presence of an α -hydroxyl group at C-12. However the ABX type signals at δ 2.68 (1H, dd, J = 15.1, 14.6), 2.39 (1H, dd, J = 14.6, 3.4) and 2.54 (1H, dd, J = 15.1, 3.4) implied the presence of a carbonyl group at C-

Fig. 2. retro-Aldol condensations of compounds 2 and 3.

н	8*	9*	10+	11†	12*	13*	14*
1α	1.29 ddd (13.6, 12.5, 6.9)	1.45 m	1.35 m	2.08 m	1.14 <i>ddd</i> (13.6, 13.6, 5.8)		1.18 <i>ddd</i> (13.9, 13.2, 5.5)
1 8	3.27 ddd	3.10 ddd	2.97 ddd	2.78 ddd	2.76 ddd	3.00 ddd	2.74 ddd
-7	(13.6, 3.5, 3.5)	(13.6, 3.5, 3.5)	(13.5, 3.5, 3.5)	(14.2, 8.3, 5.8)	(13.6, 3.7, 3.5)	(13.2, 3.5, 3.5)	(13.9, 3.7, 3.7)
2 a	2.05 m	2.05 m	2.05 m	2.55 ddd	1.75 m		1.70 m
				(15.6, 8.3, 7.8)			
2β	2.05 m	2.05 m	2.05 m	2.61 ddd	1.75 m		1.70 m
•				(15.6, 8.8, 5.8)			
3α	4.30 dd	4.29 dd	4.27 dd	_	3.27 dd	3.32 dd	3.26 dd
	(11.7, 5.5)	(11.2, 5.3)	(11.5, 5.2)		(9.9, 6.2)	(11.1, 4.7)	(10.4, 4.6)
5α	1.91 d	2.65 dd	2.65 dd	2.39 dd	1.55 dd		1.56 dd
	(12.7)	(13.6, 2.6)	(13.6, 2.6)	(14.6, 3.4)	(14.3, 2.6)		(14.3, 2.9)
6α	2.58 dd	2.92 dd,	2.93 dd	2.54 dd	2.58 dd		2.58 dd
	(12.1, 7.5)	(13.9, 2.6)	(13.6, 2.6)	(15.1, 3.4)	(14.3, 2.6)		(14.3, 2.9)
6β	1.95 m	2.80 dd	2.83 dd	2.68 dd	2.70 dd		2.68 dd
		(13.9, 13.6)	(13.6, 13,6)	(15.1, 14.6)	(14.3, 14.3)		(14.3, 14.3)
7α	5.25 dd		-	—	—		
	(7.5, 7.5)						
7β	—	—		_		4.55 m	—
12α	2.95 dq	3.09 d	4.92 s		4.51 s	2.76 d	5.63 s
	(16.8, 1.0)	(15.3)				(17.6)	
12 <i>β</i>	2.81 d	2.81 d		3.94 s		2.40 d	—
	(16.8)	(15.3)				(17.6)	
15 <i>β</i>	_	_		—	-	4.58 dd	—
						(9.9, 5.1)	
16α	2.77 dd	2.78 m	2.87 dd	2.84 dd	2.74 dd		2.79 dd
	(19.2, 8.1)		(17.6, 9.2)	(18.6, 9.3)	(18.0, 9.9)		(18.3, 9.7)
16 β	2.21 dd	2.10 m	2.26 dd	2.07 dd	2.06 dd		2.08 dd
	(19.2, 9.9)		(17.6, 8.1)	(18.6, 9.3)	(18.0, 8.1)		(18.3, 8.1)
17	2.0 m	2.05 m	2.70 ddd	2.07 ddd	2.55 ddd		2.28 ddd
			(8, 8, 8)	(9.3, 9.3, 9.3)	(9.9, 8.1, 8.3)		(8.3, 8.3, 8.3)
Me-18	3 1.10 s	0.93 s	0.98 s	0.84 s	0.64 s	0.84 s	0.89 s
Me-19) 1.54 s	1.47 s	1.52 s	1.23 s	1.37 s	1.06 s	1.33 s
20	1.50 m	1.45 m	1.95 m	1.55 m	1.80 m		1.70 m
Me-21	0.86 d	0.86 d	1.28 d	1.06 d	1.11 d	0.85 d	0.99 d
	(6.2)	(6.6)	(6.6)	(6.8)	(7.0)	(5.8)	(6.6)
22	1.80 m	1.80 m	1.95 m	1.82 m	1.80 m		1.85 m
22	1.30 m	1.40 m	1.41 m	1.43 m	1.30 m		1.30 m
23	2.43 ddd	2.45 ddd	2.48 ddd	2.43 ddd	2.41 ddd		2. 44 dd d
	(15.0, 9.5, 5.5)	(15.1, 9.3, 5.2)	(16.2, 9.2, 5.8)	(16.1, 9.3, 5.4)	(15.8, 9.2, 5.5)		(15.8, 8.6, 7.3)
23	2.30 ddd	2.31 ddd	2.37 ddd	2.30 ddd	2.27 ddd		2.41 ddd
	(15.0, 8.8, 7.0)	(15.1, 8.8, 7.0)	(16.2, 8.7, 6.9)	(16.1, 8.8, 7.3)	(15.8, 8.8, 7.0)		(15.8, 9.2, 5.7)
25	4.24 d	4.16 d	4.16 d			—	
	(10.4)	(10.8)	(10.6)				
25	3.78 d	3.61 d	3.61 d			<u> </u>	—
	(10.4)	(10.8)	(10.6)				
Me-2	5 —		_	1.12 s	1.04 s	1.05 s	1.03 s
Me-26	5 1.11 s	1.05 s	1.04 s	1.15 s	0.90 s	0.84 s	0.83 s
Me-27	7 1.30 s	1.63 s	1.78 s	1.58 s	1.69 s	1.28 s	1.73 s
COO	Me 3.65 s	3.65 s	3.65 s	3.68 s	3.66 s	3.67 s	3.67 s
OAc-1	12 —	_				_	2.22 s

Table 3. ¹H NMR spectral data of compounds 8-14 [C₅D₅N (8-10) or CDCl₃ (11-14), TMS as int. standard]

*270 MHz.

†500 MHz.

** Values in parentheses are coupling constants in Hz.

7 for 11 instead of the β -hydroxyl group for lucidenic acid E₁. Thus, the structure of methyl lucidenate K was concluded to be methyl 12 α -hydroxy-4,4,14 α -trimethyl-3,7,11,15-tetraoxo-5 α -chol-8-en-24-oate (11).

The molecular formula of compound 12, methyl lucidenate L, was assigned as $C_{28}H_{40}O_7$. Its UV spectrum

gave a absorption maximum at 255 nm (s 6930). The detailed analysis of the ¹H NMR spectrum (Table 3) indicated structure 12 for methyl lucidenate L. The signals at δ 4.58 (1H, s) and 3.27 (1H, dd, J = 9.9, 6.2) suggested the presence of 12 β - and 3 β -hydroxyl groups, respectively. Thus, the structure of methyl lucidenate L was determined to be methyl 3β , 12β -dihydroxy-4,4,14 α -trimethyl-7,11,15-trioxo- 5α -chol-8-en-24-oate (12).

Compound 13, methyl lucidenate M, gave a molecular ion peak at m/z 476 and was formulated as $C_{28}H_{44}O_6$. Its UV spectrum gave a absorption maximum at 255 nm (ε 7900), which indicated the presence of an α,β unsaturated carbonyl group. Although the ¹HNMR spectrum of 13 (Table 3) was not clearly observed because of its small amount, the signals at δ 3.32 (1H, dd, J = 11.1, 4.7), 4.55 (1H, overlapped) and 4.58 (1H, dd, J = 9.9, 5.1) implied the presence of 3β -, 7α - and 15- α -hydroxyl groups similar to compound B9 (5). Five singlet and one doublet methyl signal were also observed in higher field and their chemical shifts were in good agreement with those of the corresponding methyl groups of compound B9 (5). From these observations, it was deduced that the structure of 13 was the same as that of 5 except for the side-chain moiety. Therefore, the structure of methyl lucidenate M was elucidated to be methyl 3β , 7α , 15α -trihydroxy-4, 4, 14α trimethyl-11-oxo-5α-chol-8-en-24-oate (13).

The molecular formula of compound 14 was assigned as $C_{30}H_{42}O_8$. Its ¹H NMR (Table 3) and ¹³C NMR (Table 2) spectra entirely agreed with those of methyl lucidenate E_2 [8], which is unique in having the β -acetoxyl group at C-12. So, compound 14 was identified as methyl lucidenate E_2 .

Alkaline treatment of methyl ganoderates N (2) and O (3) afforded the corresponding *retro*-aldol condensation products 15 (lucidone B) and 16, respectively. Taking account of this observation, it appears that lucidones A, B and C [2, 5] might be artifacts generated under the alkaline conditions (satd aq. NaHCO₃) used during the isolation procedure.

EXPERIMENTAL

Mps (Yanako micro-melting point apparatus) are uncorr.; ¹H NMR: 270 and 500 MHz, CDCl₃, TMS as int. standard; ¹³C NMR: 270 MHz, CDCl₃.

Extraction and isolation. Dried chipped fruiting bodies of G. lucidum (a mixture of two strains [18], 6 kg) were extracted with EtOH. The extract was concd and partitioned between CHCl₃ and H₂O. The CHCl₃ layer was alkalinized with sat. aq. NaHCO₃ and the H₂O phase acidified to pH 3-4 with 6M HCl. The resulting ppt was dissolved in CHCl₃ and then evapd to yield an acidic residue, which was chromatographed on silica gel (fractions 1-11, CHCl₃-MeOH, 49:1; fraction 12, CHCl₃-MeOH, 9:1; fraction 13, MeOH).

Fraction 5 was rechromatographed 3 times on a silica gel column (CHCl₃-MeOH, 19:1) to give several fractions, some of which were treated with etheral CH₂N₂. The methylated fractions were separated by the combination of prep. TLC (C₆H₆-EtOAc, 1:1 or 2:1) and silica gel (CHCl₃-MeOH, 99:1) or reverse-phase LC (MeOH-H₂O, 7:3, Lobar RP-18). These separations gave compounds 1, 2, 3, 6, 7, 11, 12 and 14. Fractions 10 and 11 were combined and subjected to silica gel CC to give ganoderic acid C₂ as crude crystals, which were methylated with 3% methanolic HCl. Purification of the methylated products by reverse-phase LC (MeOH-H₂O, 3:1, RP-18) and HPLC (MeOH-H₂O, 3: 1, µ Bondapak C18) gave compound 4 as one of the impurities. Fraction 12 was subjected to reverse-phase LC (MeOH-H₂O, 13:7, Lobar RP-8) and separated into four fractions (12a-12d). Fraction 12b was treated with etheral CH₂N₂ and the methylated products were separated on a silica gel column (× 3) (CHCl₃-Me₂CO, 2:1, CHCl₃-MeOH, 19:1, C₆H₆-EtOAc, 1:6) and reverse-phase LC (MeOH-H₂O, 7:3,

RP-8) to yield compounds 8, 9 and 10. Fractions 12c and 12d were also methylated with etheral CH_2N_2 . Compound 5 was purified by silica gel column chromatography (CHCl₃-MeOH, 3:1) of the methylated product of fraction 12c. Compound 13 was isolated from the methylated product of fraction 12d by a combination of silica gel CC (CHCl₃-MeOH, 9:1), prep. TLC (CHCl₃-Me₂CO, 2:1) and reverse-phase HPLC (MeOH-H₂O, 3:2, μ Bondapak C18).

Methyl ganoderate M (1). Compound 1 was crystallized from MeOH as needles (1.5 mg), mp 206–210°. EIMS m/z (rel. int.): 544.3058 [M]⁺ (C₃₁H₄₄O₈, calc. 544.3037) (3), 526 (6), 355 (6), 304 (100), 139 (23), 129 (31), 69 (25), 59 (37); IR v_{max}^{lmax} cm⁻¹: 3450, 2900, 1710, 1660, UV λ_{max}^{MeOH} nm (e): 258 (2940); CD λ^{MeOH} nm (Δz): 292 (-1.0), 282 (0), 257 (+7.3), 230 (0), 218 (-2.8).

Methyl ganoderate N (2). Compound 2 was crystallized from EtOAc-cyclohexane as prisms (22.7 mg), mp 164-167°, $[\alpha]_{24}^{24}$ + 153° (c = 0.2, MeOH). FDMS m/z (rel. int.): 544 [M]⁺ (10), 400 (100), 187 (77), 144 (43); EIMS m/z (rel. int.): 544.3057 [M]⁺ (C₃₁H₄₄O₈, calc. 544.3037) (0.06), 400 [C₂₄H₃₂O₅]⁺ (2), 372 (5), 129 (7), 112 (18), 87 (21), 59 (21), 43 (100); IR v $_{max}^{bec}$ m⁻¹: 3450, 2950, 1720, 1700, 1650; UV λ_{max}^{beOH} nm (e): 254 (7180); CD λ^{MeOH} nm ($\Delta \epsilon$): 292 (-2.5), 280 (0), 255 (+18.1), 229 (0), 215 (-7.3).

Alkaline treatment of 2. Compound 2 (1.3 mg) in MeOH (0.2 ml) was treated with 1M KOH (0.2 ml). After 30 min, the reaction mixture was diluted with H_2O and extracted with Et_2O (15 ml). The organic layer was dried (Na_2SO_4) and concd to give compound 15 (1.5 mg): $[M]^+$, m/z 400 ($C_{24}H_{32}O_5$); ¹H NMR: identical to that of lucidone B [2].

Methyl ganoderate O (3). Compound 3 was obtained as pale yellow needles (3.5 mg, from Et₂O-hexane), mp 168-171°. FDMS m/z (rel. int.): 542 [M]⁺ (100), 398 (43), 355 (20), 187 (90), 144 (31); EIMS m/z (rel. int.): 398 [C₂₄H₃₀O₅]⁺ (6), 355 (4), 300 (42), 215 (23), 87 (15), 59 (15), 43 (100); IR ν_{max}^{bhm} cm⁻¹: 3475, 2950, 1740, 1700; UV λ_{max}^{MeOH} nm (ϵ): 252 (6610); CD λ^{MeOH} nm ($\Delta \epsilon$): 330 (0), 305 (-5.0), 290 (0), 277 (+5.1), 259 (0), 252 (-1.5), 243 (0), 225 (+8.4), 212 (0).

Alkaline treatment of 3. Compound 3 (0.9 mg) in MeOH (0.2 ml) was treated with 1 M KOH. After 35 min, the reaction mixture was diluted with H₂O and extracted with EtOAc. The organic layer was dried (Na₂SO₄) and concd to yield compound 16 (0.7 mg). Compound 16, a colourless syrup, C₂₄H₃₀O₅ (calc. 398.2094, [M]⁺, m/z 398.2080). EIMS m/z (rel. int.): 398 [M]⁺ (9), 300 (60), 215 (33), 187 (20), 163 (19), 69 (25), 55 (28), 43 (100); ¹H NMR: δ 3.38 (1H, dd, J = 8.8, 8.8, H-17), 3.07 (1H, dq, J = 15.8, 1.1, H-12 α), 2.90 (1H, ddd, J = 14.5, 8.1, 6.1, H-1 β), 2.85 $(1H, dd, J = 19.0, 8.8, H-16), 2.84 (1H, d, J = 15.8, H-12\beta), 2.70$ $(1H, dd, J = 14.7, 13.6, H-6\beta), 2.63 (1H, ddd, J = 15.6, 9.5, 6.1, H-6\beta)$ 2), 2.62 (1H, dd, J = 19.0, 8.8, H-16), 2.49 (1H, dd, J = 13.6, 2.6, H- 6α), 2.48 (1H, ddd, J = 15.6, 8.1, 6.1, H-2), 2.32 (1H, dd, J = 14.7, A2.6, H-5a), 2.21 (3H, s, H-21), 1.75 (1H, ddd, J = 14.7, 9.5, 6.1, H-1a), 1.70 (3H, s, H-24), 1.28 (3H, s, H-19), 1.15 (3H, s, H-23), 1.12 (3H, s, H-22), 0.78 (3H, d, J = 1.1, H-18). From these data, compound 16 was determined to be 4,4,14a-trimethyl-3,7,11,15,20-pentaoxo-5a-pregn-8-en, which was also prepared by oxidation of lucidone B (15).

Oxidation of lucidone B (15). Lucidone B (16.9 mg) was reacted with pyridinium dichromate (60 mg) in DMF (0.15 ml) for 18 hr at room temp. The reaction mixture was diluted with H₂O and then extracted with Et₂O (30 ml). After drying (Na₂SO₄), the organic layer was concentrated and subjected to prep. TLC (C₆H₆-EtOAc, 1:1, two developments). Oxidized lucidone B was obtained as a pale yellow syrup and was identical to compound 16 (MS and ¹H NMR).

Methyl ganoderate K (4). Compound 4 was obtained as a pale yellow syrup (1.7 mg). EIMS m/z (rel. int.): 530.3204 [M]⁺

(C₃₁H₄₆O₇, calc. 530.3245) (80), 512 (7), 368 (71), 171 (28), 139 (41), 129 (62), 69 (49), 59 (100), 43 (66); IR $\nu_{\text{max}}^{\text{film}}$ cm⁻¹: 3450, 2975, 2930, 1710, 1665; UV $\lambda_{\text{EtOH}}^{\text{EtOH}}$ nm (ε): 272 (6570). CD $\lambda_{\text{EtOH}}^{\text{EtOH}}$ nm ($\Delta\varepsilon$): 314 (0), 272 (+5.5), 238 (0).

'Compound B9' (5). Compound 5 was crystallized from EtOH-H₂O as needles (20.2 mg), mp 213-216°, $[\alpha]_{23}^{23}$ + 156° (c = 0.1, MeOH). EIMS m/z (rel. int.): 532.3317 [M]⁺ (C₃₁H₄₅O₇, calc. 532.3401) (8), 364 (5), 236 (10), 129 (16), 83 (100); IR ν_{max}^{dim} cm⁻¹: 3380, 2925, 1710, 1650; UV λ_{max}^{MeOH} nm (z): 254 (10430). CD λ^{MeOH} nm (Δz): 355 (-2.9), 291 (0), 257 (+21.9), 233 (0), 222 (-3.22).

Acetylation of 5. $Ac_2O-C_5H_3N$ treatment of 5 (6.3 mg) overnight at room temp. gave a diacetate 5a (3.8 mg) as a major product, which was purified by prep. TLC (CHCl₃-MeOH, 49:1). EIMS and ¹H NMR spectrum of 5 were as follows. EIMS m/z (rel. int.): 616.3575 [M]⁺ (C₃₅H₅₂O₉, calc. 616.3613) (5), 556 (28), 496 (13), 412 (30), 278 (42), 171 (23), 129 (53), 69 (45), 59 (70), 43 (100); ¹H NMR: δ 5.28 (1H, dd, J = 9.3, 5.7, H-15 β), 4.57 (1H, dd, J = 11.2, 5.3, H-3 α). 4.31 (1H, m, H-7 β), 2.99 (1H, ddd, J = 13.6, 3.5, 3.5, H-1 β), 2.82 (1H, dd, J = 17.6, 8.1, H-24), 2.77 (1H, d, J = 17.6, H-12 α), 2.43 (1H, dd, J = 17.6, 5.1, H-24), 2.42 (1H, dd, J = 17.6, H-12 β), 2.12 (3H, s, OAc), 2.06 (3H, s, OAc), 1.36 (3H, s, H-30), 1.17 (3H, d, J = 7.0, H-27), 1.06 (3H, s, H-19), 0.93 (3H, s), 0.92 (3H, s), 0.90 (3H, s), 0.86 (3H, d, J = 5.9, H-21).

Oxidation of 5. Compound 5 (8.3 mg) was reacted with pyridinium dichromate (50 mg) in DMF (0.1 ml) for 14 hr at room temp. The reaction mixture was added to H_2O and extracted with Et_2O (20 ml). After drying (Na₂SO₄), the organic layer was coned and subjected to prep. TLC (CHCl₃-MeOH, 49:1) to yield a pentaketo compound, the EIMS and ¹H NMR data of which were identical with those of the pentaketo compound (5b) derived from methyl ganoderates A and B [6].

Methyl ganoderate H (6). Compound 6 was obtained as a pale yellow syrup (11.6 mg), $[\alpha]_{D4}^{24} + 54^{\circ}$ (c = 0.2, MeOH). EIMS m/z(rel. int.): 586.3129 [M]⁺ (C₃₃H₄₆O₉, calc. 586.3134) (1.1), 544 (13), 304 (13), 191 (12), 129 (41), 69 (31), 59 (61), 43 (100); IR ν_{max}^{flim} cm⁻¹: 3500, 2930, 1740, 1690; UV λ_{max}^{MeOH} nm (ϵ): 256 (6270); CD λ^{MeOH} nm ($\Delta\epsilon$): 336 (0), 305 (-6.4), 290 (0), 278 (+6.6), 264 (0), 252 (-4.4), 241 (0), 225 (+11.2), 210 (0).

Methyl ganoderenate E (7). Compound 7 was crystallized from EtOAc-MeOH as needles (2.1 mg), mp 227-229°. EIMS m/z (rel. int.): 542.2874 [M]⁺ (C₃₁H₄₂O₈, calc. 542.2881) (5), 524 (19), 464 (9), 304 (39), 165 (28), 129 (100), 95 (27), 59 (49); IR $\nu_{\text{finst}}^{\text{finst}}$ cm⁻¹: 3450, 2950, 1725, 1700, 1660, 1610; UV $\lambda_{\text{mex}}^{\text{MeOH}}$ nm (ε): 247 (11760); CD λ^{MeOH} nm (Δε): 290 (-2.1), 279 (0), 255 (+11.5), 228 (0).

Methyl lucidenate H (8). Compound 8 was crystallized from EtOAc-cyclohexane as pale yellow prisms (34.2 mg), mp 190-192°, $[\alpha]_{D^3}^{23}$ + 136° (c = 0.2, MeOH). EIMS m/z (rel. int.): 490.2932 [M]⁺ (C₂₈H₄₂O₇, calc. 490.2932) (38), 472 (22), 462 (30), 347 (100), 334 (63), 322 (36), 107 (61), 95 (35), 81 (36), 69 (43), 55 (66), 43 (88); IR ν_{max}^{film} cm⁻¹: 3400, 2925, 1720, 1655; UV λ_{max}^{MeOH} nm (ε): 255 (7550); CD λ^{MeOH} nm ($\Delta \varepsilon$): 293 (-3.3), 280 (0), 255 (+14.9), 230 (0), 210 (-8.3).

Methyl lucidenate H acetonide (8a). Compound 8 (5 mg) in Me_2CO (2 ml) was shaken with anhydrous $CuSO_4$ (50 mg) at room temp. for 4 hr. Filtration and evapn of the solvent gave a colourless solid, which was purified by prep. TLC (CHCl₃-MeOH, 19:1) to yield acetonide 8a (4.4 mg). EIMS m/z (rel. int): 530.3238 [M]⁺ (C₃₁H₄₆O₇, calc. 530.3245) (31), 515 (46), 502 (21), 472 (24), 455 (23), 437 (51), 386 (46), 361 (35), 333 (31), 298 (20), 55 (65), 43 (100); ¹H NMR: δ 4.79 (1H, ddd, J = 8.3, 8.3, 4.4, H-7 α), 4.08 (1H, d, J = 4.4, 7 β -OH), 3.68 (3H, s, COOMe), 3.59 (1H, d, J = 10.6, H-25), 2.94 (1H, ddd, J = 11.7, 4.0, H-3 α). 3.42 (1H, dd, J = 19.3, 8.1, H-16), 2.79 (1H, d, J = 16.0, H-16), 2.79 (1H, dd, J = 16.0), H-16), 2.79 (1

12 α), 2.70 (1H, d, J = 16.0, H-12 β), 2.40 (1H, ddd, J = 16.2, 9.2, 5.2, H-23), 2.28 (1H, d, J = 16.2, 8.1, 6.9, H-23), 2.12 (1H, dd, J = 19.3, 9.5, H-16), 1.99 (1H, dd, J = 9.5, 9.5, 8.1, H-17), 1.87 (1H, ddd, J = 13.3, 8.1, 1.7, H-6 α), 1.44 (3H, s, acctonide), 1.42 (3H, s, acctonide), 1.36 (3H, s, H-27), 1.26 (3H, s, H-19), 1.11 (3H, s, H-26), 1.08 (1H, ddd, J = 13.8, 13.8, 4.4, H-1 α), 0.97 (3H, s, H-18), 0.97 (3H, d, J = 6.2, H-21).

Methyl lucidenate I (9). Compound 9 was obtained as a pale yellow syrup (12.6 mg), $[\alpha]_{23}^{23} + 118^{\circ} (c = 0.1, MeOH)$. EIMS m/z (rel. int.): 488.2796 [M]⁺ (C₂₈H₄₀O₇, calc. 488.2775) (30), 470 (12), 265 (20), 141 (33), 109 (42), 95 (36), 81 (33), 69 (40), 55 (73), 44 (100); IR v^{film} cm⁻¹: 3400, 2925, 1735, 1675; UV λ^{MeOH}_{max} nm (e): 262 (6830); CD λ^{MeOH} nm (Δ e): 333 (0), 305 (-4.9), 292 (0), 275 (+8.3), 245 (0), 231 (+0.2), 225 (0), 207 (-4.4).

Methyl lucidenate J (10). Compound 10 was obtained as a pale yellow syrup (4.7 mg), $[\alpha]_{D}^{25} + 78^{\circ}$ (c = 0.1, MeOH). EIMS m/z(rel. int.): 504.2746 [M]⁺ ($C_{28}H_{40}O_8$, calc. 504.2724) (51), 458 (25), 371 (65), 353 (33), 155 (39), 115 (42), 95 (34), 55 (67), 43 (100); IR ν_{max}^{dim} cm⁻¹: 3430, 2930, 1740, 1680; UV λ_{max}^{MeOH} nm (ϵ): 255 (6400); CD λ^{MeOH} nm ($\Delta \epsilon$): 346 (0), 308 (-6.0), 292 (0), 279 (+6.0), 262 (0), 255 (-1.2), 248 (0), 228 (+5.7), 215 (0).

Methyl lucidenate K (11). Compound 11 was obtained as a pale yellow syrup (1.6 mg). EIMS m/z (rel. int.): 486.2601 [M]⁺ (C₂₈H₃₈O₇, calc. 486.2618) (63), 458 (19), 371 (39), 353 (22), 302 (100), 287 (35), 55 (55), 43 (57); IR ν_{max}^{film} cm⁻¹: 3450, 2920, 1735, 1700, 1680; UV λ_{mex}^{MeOH} nm (ε): 258 (5440); CD λ^{MeOH} nm ($\Delta \varepsilon$): 337 (0), 308 (-4.1), 291 (0), 272 (+4.4), 233 (+3.4), 218 (0).

Methyl lucidenate L (12). Compound 12 was obtained as a pale yellow syrup (2.2 mg). EIMS m/z (rel. int.): 488.2766 [M]⁺ (C₂₈H₄₀O₇, calc. 488.2775) (10), 304 (100), 191 (21), 129 (35), 95 (21), 69 (26), 55 (43), 43 (78); IR $\nu \frac{\text{film}}{\text{max}}$ cm⁻¹: 3450, 2920, 1740, 1680; UV $\lambda \frac{\text{MeOH}}{\text{max}}$ nm (c): 255 (6930); CD $\lambda \frac{\text{MeOH}}{\text{nm}}$ ($\Delta \varepsilon$): 345 (0), 307 (-7.1), 291 (0), 278 (+6.2), 264 (0), 256 (-2.1), 246 (0), 227 (+8.3), 213 (0).

Methyl lucidenate M (13). Compound 13 was obtained as a syrup (1.0 mg). EIMS m/z (rel. int.): 476.3105 [M]⁺ (C₂₈H₄₄O₆, calc. 476.3139) (100), 458 (37), 336 (56), 236 (53), 69 (58), 55 (92), 43 (96); UV λ_{max}^{EIOH} nm (z): 7900.

Methyl lucidenate E_2 (14). Compound 14 was crystallized as pale yellow needles (51.3 mg), mp 161–164°, $[\alpha]_D^{24} + 65°$ (c = 0.2, MeOH). EIMS m/z (rel. int.): 530.2851 [M]⁺ (C₃₀H₄₂O₈, calc. 530.2881) (2.2), 470 (6), 304 (100), 185 (27), 167 (35), 107 (16), 55 (25), 43 (81); IR $\nu \frac{fim}{max}$ cm⁻¹: 3500, 2925, 1740, 1690; UV $\lambda \frac{MeOH}{max}$ nm (c): 258 (5990); CD $\lambda ^{MeOH}$ nm (Δc): 335 (0), 305 (-6.1), 290 (0), 278 (+6.8), 264 (0), 253 (-4.5), 242 (0), 225 (+10.6).

Acknowledgements—We are thankful to Mr. A. Honda for supplying the fruiting bodies of G. lucidum. We are also grateful to Miss Y. Misu (¹H and ¹³C NMR, 270 MHz), Dr. M. Ikura (¹H NMR, 500 MHz), Mr. K. Watanabe (FDMS), Miss Y. Atsuta (EIMS) and their associates, Hokkaido University, for spectral measurements.

REFERENCES

- Nishitoba, T., Sato, H., Kasai, T., Kawagishi, H. and Sakamura, S. (1984) Agric. Biol. Chem. 48, 2905.
- Nishitoba, T., Sato, H. and Sakamura, S. (1985) Agric. Biol. Chem. 49, 1547.
- Nishitoba, T., Sato, H., Kasai, T., Kawagishi, H. and Sakamura, S. (1985) Agric. Biol. Chem. 49, 1793.
- Nishitoba, T., Sato, H. and Sakamura, S. (1985) Agric. Biol. Chem. 49, 3637.
- Nishitoba, T., Sato, H. and Sakamura, S. (1986) Agric. Biol. Chem. 50, 809.

- 6. Kubota, T., Asaka, Y., Miura, I. and Mori, H. (1982) Helv. Chim. Acta 65, 611.
- Kohda, H., Tokumoto, W., Sakamoto, K., Fujii, M., Hirai, Y., Yamasaki, K., Komoda, Y., Nakamura, H., Ishihara, S. and Uchida, M. (1985) Chem. Pharm. Bull. 33, 1367.
- Kikuchi, T., Matsuda, S., Kadota, S., Murai, Y. and Ogita, Z. (1985) Chem. Pharm. Bull. 33, 2624.
- 9. Kikuchi, T., Matsuda, S., Murai, Y. and Ogita, Z. (1985) Chem. Pharm. Bull. 33, 2628.
- 10. Hirotani, M., Furuya, T. and Shiro, H. (1985) Phytochemistry 24, 2055.
- Komoda, Y., Nakamura, H., Ishihara, S., Uchida, M., Kohda, H. and Yamasaki, K. (1985) Chem. Pharm. Bull. 33, 4829.

- 12. Hirotani, M. and Furuya, T. (1986) Phytochemistry 25, 1189.
- Kikuchi, T., Kanomi (nee Matsuda), S., Kadota, S., Murai, Y., Tsubono, K. and Ogita, Z. (1986) Chem. Pharm. Bull. (in press).
- 14. Toth, J. O., Luu, B. and Ourisson, G. (1983) Tetrahedron Letters 24, 1081.
- Toth, J. O., Luu, B., Beck, J. P. and Ourisson, G. (1983) J. Chem. Res. (S) 299; (1983) J. Chem. Res. (M) 2722.
- Corey, E. J. and Schmidt, G. (1979) Tetrahedron Letters 399.
 Tsuda, Y., Sano, T., Isobe, K. and Miyauchi, M. (1974) Chem.
- Pharm. Bull. 22, 2396.
- Nishitoba, T., Sato, H., Shirasu, S. and Sakamura, S. (1986) Agric. Biol. Chem. 50, 2151.