Synthesis and Synthetic Applications of α , β -Dideuterio- α -amino Esters Promoted by Samarium Diiodide

José M. Concellón,* Humberto Rodríguez-Solla,* Carmen Concellón, Paula Tuya

Departamento Química Orgánica e Inorgánica, Universidad de Oviedo, C/ Julián Clavería 8, 33006 Oviedo, Spain E-mail: jmcg@uniovi.es Received 11 October 2007

Abstract: A new, easy, and high-yielded route to isotopically labeled amino acid derivatives is reported. This process takes place through a SmI_2 -promoted 1,4-reduction of a variety of dehydro-amino esters in the presence of D₂O. The dideuterio amino esters were transformed into other dideuterated compounds such as α -amino acids and 1,2-amino alcohols. A mechanism to explain the 1,4-reduction process is also proposed.

Key words: amino acids, deuteration, reductions, samarium

Isotopically labeled compounds are very useful to establish the mechanism of organic reactions and the biosynthesis of many natural compounds.¹ The incorporation of isotopically labeled α -amino acid residues into proteins has become a vital tool in the determination of protein structure by NMR techniques. The indiscriminate incorporation of the NMR active isotopes ¹⁵N and ¹³C enables the effective employment of heteronuclear correlation experiments, while the incorporation of deuterium simplifies the assignment of the residual ¹H resonances, facilitating structural determination through the interpretation of NOE data. In this context, the incorporation of deuterated α -amino acids into polypeptides is a powerful tool in the structural determination of large biomolecules.² In addition, α -amino acids isotopically labeled on the side-chain have also found utility as valuable probes into biosynthetic pathways.³

Pioneered by Kagan in 1977,⁴ samarium diiodide has rapidly become an important reagent in organic chemistry because of its versatility in one- and two-electron-transfer reactions. Since then, SmI₂ has emerged as one of the more useful reducing agents in synthetic organic chemistry. As a consequence of its increasing importance, several reviews have appeared that focus the utility of samarium diiodide to promote C–C bond-formation reactions,⁵ and different reduction processes⁶ including the reduction of multiple bonds.^{6c}

Previously, we have reported the use of samarium diiodide in a range of practical methods for the synthesis of various deuterated compounds such as 2,3-dideuterio esters,⁷ amides⁷ or acids,⁸ 2-deuterio-3-hydroxyesters,⁷ (*E*)- α , δ -dideuterio- β , γ -unsaturated esters⁹ or acids,⁸ 3-aryl-3-

SYNLETT 2008, No. 3, pp 0402–0404 Advanced online publication: 23.01.2008 DOI: 10.1055/s-2008-1032063; Art ID: G31007ST © Georg Thieme Verlag Stuttgart · New York

Scheme 1 Synthesis of starting materials 5

deuterio-2-hydroxyamides,¹⁰ and 2,2,3,3-tetradeuterio esters, amides, and acids.¹¹

As part of our program concerned with the development of new reduction processes mediated by SmI₂, towards the synthesis of various deuterated compounds we wish to report herein a new and easy route to access α , β -dideuterio- α -amino esters, by treatment of dehydroamino acids mediated by a SmI₂ and D₂O system, in high yields. A mechanism to explain this process is also proposed.

The starting (*Z*)-*N*-acetyldehydroamino esters **5** were easily prepared in four steps from commercially available *N*-acetylglycine (**1**) after an esterification, bromination, and a Horner–Wadsworth–Emmons protocol (Scheme 1).¹²

The reaction of various (*Z*)-*N*-acetyldehydroamino esters **5** in THF with SmI_2 and D_2O^{13} at room temperature for 30 minutes afforded the corresponding dideuterio amino esters **6** in moderate or high yields (Table 1).¹⁴

This proposed methodology for obtaining isotopically labeled α -amino acid derivatives is general and the R group can be varied. Thus, aliphatic (linear, branched, or cyclic), unsaturated, or aromatic aldehydes may be used to introduce different R groups. It is noteworthy that the deuteration of the C–C double bond was completely chemoselective. Thus, employing compound **5f** (Table 1, entry 6), only the C=C conjugated with the carbonyl group was deuterated remaining the nonconjugated C–C double bond unaltered.

The position of deuteration was established by ¹H NMR and ¹³C NMR spectroscopy of compounds **6**, while the complete deuterium incorporation (>99%) was verified

Table 1 Synthesis of Isotopically Labeled α-Amino Esters 6			
R OMe -		Sml ₂ , D ₂ O THF	
5			6
Entry	6	R	Yield (%) ^a
1	6a	$n-C_7H_{15}$	82
2	6b	$PhCH_2CH_2$	72
3	6c	<i>i</i> -Pr	80
4	6d	s-Bu	65
5	6e	Су	85

^a Isolated yield of pure compounds **6** after column chromatography based on compounds **5**.

Ph^t

(Z)-EtCH=CH(CH₂)₅

65

75

6f

6g

6

7

^b In this case the reaction was performed on the ethyl ester rather than the methyl ester.

by mass spectrometry.¹⁵ These α , β -dideuterio- α -amino acid derivatives were isolated as mixtures of stereoisomers (approx. 1:1 by ¹H NMR spectroscopy and GC-MS) this fact being in agreement with the observed results of the SmI₂ and D₂O promoted synthesis of other deuterated compounds.^{7–9}

It is noteworthy that D_2O is the cheapest deuteration reagent available for obtaining organic compounds isotopically labeled with deuterium.

The synthesis of products **6** might be explained by assuming that the SmI₂-promoted 1,4-reduction of **5** is initiated by single-electron transfer of SmI₂ to generate the enolate **8**; this radical is then hydrolyzed by the acidic deuterium from the N–D bond and afford the corresponding radical **9**. After a second electron transfer from SmI₂ the radical generated the dianion **10**, this being hydrolyzed by D₂O to afford the corresponding compound **6** (Scheme 2). When the starting compounds **5** were not pretreated with D₂O, a competitive hydrolysis of **8** and **10** produced by the acidic proton of the N–H amide group and D₂O afforded a mixture of mono-, di-, and nondeuterated compounds.¹⁶

To demonstrate some synthetic applications of the obtained α -amino esters **6**, a selected example was readily transformed into isotopically labeled α -amino acids^{2,3} **11** and dideuterated 1,2-amino alcohols **12**¹⁷ (Scheme 3).¹⁸

These reactions took place in very high yields and no loss of the deuterium atoms were observed in both cases.

In conclusion, we have described a general synthesis of isotopically labeled α -amino acid derivatives in good yields through a SmI₂-promoted 1,4-reduction process on readily available dehydroamino esters. Other different isotopically labeled compounds such as α -amino acids and 1,2-amino alcohols were accessed.

Scheme 2 Mechanistic proposal for the conversion of 5 into 6

Scheme 3 Conversion of 6e into 11e and 12e

Acknowledgment

We thank the Ministerio de Educación y Ciencia (CTQ2004-1191/ BQU) for financial support. J.M.C. thanks Carmen Fernández-Flórez for her time. H.R.S. thanks the Ministerio de Educación y Ciencia for a Ramón y Cajal Contract (Fondo Social Europeo). Our thanks to Euan C. Goddard for his revision of the English.

References and Notes

- Mann, J. In Secondary Metabolism; Oxford University Press: Oxford, 1991, Chap. 3, 417.
- (2) For a review on the application of isotopic labeling in protein-structure determination, see: Lian, L.-Y.; Middleton, D. A. *Prog. Nucl. Magn. Reson. Spectrosc.* **2001**, *39*, 171.
- (3) For example, see: (a) Baldwin, J. E.; Adlington, R. M.; Marquess, D. G.; Pitt, A. R.; Porter, M. J.; Russell, A. T. *Tetrahedron* 1996, *52*, 2515. (b) Church, N. J.; Young, D. W. *J. Chem. Soc., Perkin Trans. 1* 1998, *52*, 1475.
 (c) Pirrung, M. C. Acc. Chem. Res. 1999, *32*, 711.
- (4) (a) Namy, J.-L.; Girard, P.; Kagan, H. B. New J. Chem. **1977**, *1*, 5. (b) Girard, P.; Namy, J.-L.; Kagan, H. B. J. Am. Chem. Soc. **1980**, *102*, 2693.
- (5) (a) Molander, G. A.; Harris, C. R. *Chem. Rev.* 1996, 96, 307.
 (b) Molander, G. A.; Harris, C. R. *Tetrahedron* 1998, 54, 3321. (c) Krief, A.; Laval, A. M. *Chem. Rev.* 1999, 99, 745.
 (d) Steel, P. G. *J. Chem. Soc., Perkin Trans. 1* 2001, 2727.
 (e) Kagan, H. B. *Tetrahedron* 2003, 59, 10351.
 (f) Concellón, J. M.; Rodríguez-Solla, H. *Chem. Soc. Rev.* 2004, 33, 599.

- (6) (a) Molander, G. A. In *Organic Reactions*, Vol. 46; Paquette, L. A., Ed.; John Wiley: New York, **1994**, 211. (b) Dahlén, A.; Hilmersson, G. *Eur. J. Inorg. Chem.* **2004**, 3393.
 (c) Concellón, J. M.; Rodríguez-Solla, H. *Eur. J. Org. Chem.* **2006**, 1613.
- (7) Concellón, J. M.; Rodríguez-Solla, H. *Chem. Eur. J.* **2001**, 7, 4266.
- (8) Concellón, J. M.; Rodríguez-Solla, H. Chem. Eur. J. 2002, 8, 4493.
- (9) Concellón, J. M.; Bernad, P. L.; Rodríguez-Solla, H. Angew. Chem. Int. Ed. 2001, 40, 3897.
- (10) Concellón, J. M.; Bardales, E.; Gómez, C. *Tetrahedron Lett.* 2003, 44, 5323.
- (11) Concellón, J. M.; Rodríguez-Solla, H.; Concellón, C. *Tetrahedron Lett.* **2004**, *45*, 2129.
- (12) (a) Evans, D. A.; Michael, F. E.; Tedrow, J. S.; Campos, K. R. J. Am. Chem. Soc. 2003, 125, 3534. (b) Daumas, M.; Vo-Quang, L.; Le Goffic, F. Synth. Commun. 1990, 20, 3395.
 (c) Schmidt, U.; Lieberknecht, A.; Wild, J. Synthesis 1984, 20, 53.
- (13) The solution of SmI₂ in THF was rapidly obtained by reaction of diiodomethane with samarium powder in the presence of sonic waves: Concellón, J. M.; Rodríguez-Solla, H.; Bardales, E.; Huerta, M. *Eur. J. Org. Chem.* **2003**, 1775.
- (14) General Procedure for Compound 6a Under nitrogen, a solution of SmI₂ (1.2 mmol) in THF (15 mL) was added dropwise to a stirred solution of the starting material 5a in D₂O (2 mL) and THF (2 mL) at r.t. The reaction mixture was stirred for 30 min and then treated with 0.1 M aq HCl (5 mL). Standard workup afforded the crude 2,3-dideuterio-2-amino ester **6a**, which was purified by flash column chromatography on SiO₂ (hexane-EtOAc, 5:1): Methyl 2-Acetylamino-2,3-dideuteriodecanoate (6a) $R_f = 0.26$ (hexane–EtOAc, 1:1). ¹H NMR (300 MHz, $CDCl_3$): $\delta = 6.16$ (br s, 1 H), 3.70 (s, 3 H), 1.99 (s, 3 H), 1.65–1.51 (m, 1 H), 1.33–1.10 (m, 12 H), 0.84 (t, J = 6.7 Hz, 3 H). ¹³C NMR (75 MHz, CDCl₃): δ = 173.2 (C), 169.8 (C), 52.1 (CH₃), 51.7 (t, J = 21.8 Hz, CD), 31.8 (t, J = 19.6 Hz, CHD), 31.6 (CH₂), 29.2 (CH₂), 29.0 (2 × CH₂), 24.9 (CH₂), 22.9 (CH₃), 22.5 (CH₂), 13.9 (CH₃). MS (70 eV): m/z (%) = 245 (5) [M⁺], 186 (55), 144 (100). HRMS: m/z calcd for C₁₃H₂₃D₂NO₃: 245.1960; found: 245.1944. IR (neat): 3263, 3063, 2922, 1742, 1652, 1374 cm⁻¹.
- (15) In the mass spectra (MS and HRMS) of deuterated compounds 6a,c,e,g, the [M]⁺ peaks of the corresponding nondeuterated compounds are either absent or very weak, indicating that these species are present to an extent of <2%.</p>

- (16) However, the deuteration of $\mathbf{8}$ to give $\mathbf{9}$ produced by D_2O could not be rejected.
- (17) β-Amino alkanols are important building blocks and have been used to prepare a large number of biologically active natural and synthetic compounds, including unnatural amino acids: (a) Corey, E. J.; Zhang, F. Angew. Chem. Int. Ed. 1999, 38, 1931. (b) O'Brien, P. Angew. Chem. Int. Ed. 1999, 38, 326. (c) Johannes, C. W.; Visser, M. S.; Weatherhead, G. S.; Hoveyda, A. H. J. Am. Chem. Soc. 1998, 120, 8340. (d) Chang, B. L.; Ganesan, A. Bioorg. Med. Chem. Lett. 1997, 7, 1511. (e) Li, G.; Chang, H. T.; Sharpless, K. B. Angew. Chem. Int. Ed. 1996, 35, 451. (f) Rogers, G. A.; Parsons, S. M.; Anderson, D. S.; Nilson, L. M.; Bahr, B. A.; Kornreich, W. D.; Kaufman, R.; Jacobs, R. S.; Kirtman, B. J. Med. Chem. 1989, 32, 1217.
- (18) General Procedure for the Synthesis of Compound 11e 2-Acetylamino-3-cyclohexyl-2,3-dideuteriopropanoic acid methyl ester (6e, 100 mg, 0.43 mmol) was refluxed in concd HCl for 12 h. Then, aq HCl was evaporated at low pressure and 2-amino-3-cyclohexyl-2,3-dideuteriopropanoic acid hydrochloride was recovered as a colorless solid; quant. yield. ¹H NMR (300 MHz, D_2O): $\delta = 1.68$ (d, J = 7.9 Hz, 1 H), 1.63–1.40 (m, 5 H), 1.35–1.21 (m, 1 H), 1.10–1.01 (m, 3 H), 0.98–0.72 (m, 2 H). ¹³C NMR (75 MHz, D_2O): $\delta = 175.3$ (C), 52.8 (CD, J = 20.5 Hz), 39.3 (CHD, J = 19.0 Hz), 35.2 (CH), 34.9 (CH₂), 34.1 (CH₂), 28.1 (CH₂), 27.8 (CH₂), 27.7 (CH₂). IR (neat): = 3425, 2926, 1652, 1265 cm⁻¹ General Procedure for the Synthesis of Compound 12e To a solution of 2-acetylamino-3-cyclohexyl-2,3dideuteriopropanoic acid methyl ester (6e, 57 mg, 0.25 mmol) in THF (5 mL), a 1.0 M in THF solution of LiAlH₄ (0.28 mL, 0.28 mmol) was added dropwise at 0 °C under nitrogen. The resulting solution was stirred at r.t. for 12 h, then quenched with ice water and filtered through a pad of Celite[®]. The aqueous layer was extracted with Et₂O, dried over Na₂SO₄ and finally the solvents were removed under vacuum, to afford 2-acetylamino-3-cyclohexyl-2,3dideuteriopropan-1-ol as a white solid; 83% yield. ¹H NMR $(300 \text{ MHz}, \text{CDCl}_3): \delta = 5.63 \text{ (br s, 1 H)}, 3.66 \text{ (d, } J = 11.1 \text{ Hz},$ 1 H), 3.50 (d, J = 11.1 Hz, 1 H), 2.01 (s, 3 H), 1.79–0.84 (m, 12 H). ¹³C NMR (75 MHz, CDCl₃): δ = 171.1 (C), 66.3 (CH₂), 49.1 (t, *J* = 20.0 Hz, CD), 38.2 (t, *J* = 19.5 Hz, CHD), 34.1 (CH), 33.6 (CH₂), 32.8 (CH₂), 26.3 (CH₂), 26.1 (CH₂), 26.0 (CH₂), 23.4 (CH₃). IR (neat): 1653, 1636, 1558, 1540 cm⁻¹.

Copyright of Synlett is the property of Georg Thieme Verlag Stuttgart and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.