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ABSTRACT – A practical and efficient four-step synthesis of the natural product deca-4,6,8-triyn-1-ol 

has been achieved beginning with (triisopropylsilyl)acetylene.  This trialkyne has potential utility as a 

key intermediate for the total synthesis of the antitumor butenolide natural product vernoniyne.
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Introduction 

Polyacetylenes
1
 are a fascinating class of compounds whose chemistry

2
 is of longstanding and 

continuing interest due in part to the diverse biological activity of natural products with structures 

incorporating this functionality.
3
  The polyacetylene natural product deca-4,6,8-triyn-1-ol (1) was 

isolated for the first time in 1969 by Bentley and co-workers from an ethyl ether extract of the roots of 

Lactuca plumieri (Asteraceae), a species native to Southern Europe and belonging to the same genus as 

lettuce (Lactuca sativa).
4
  In 1970 Bohlmann reported the presence of 1 in Tridax trilobata,

5
 and three 

decades later 1 was isolated from fungi species such as the basidiomycetes Psathyrella scobinacea
6
 

and Hypsizygus marmoreus.
7
  In many cases triynol 1 has been isolated in mixtures with isomeric 
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polyacetylenes, polyacetylenic acids, and allenes that are difficult to separate.  To our knowledge, the 

biological activity of triynol 1 has not been explored to date. 

 

 

One of our laboratories has a longstanding interest in polyacetylene natural products and has 

previously reported the presence of eight new polyacetylenes in Vernonia scorpioides (Asteraceae).
8
  

Among these natural products, vernoniyne (2) (R-(+)-5-octa-2,4,6-triynyl-furan-2(5H)-one) was found 

to be the most active anticancer agent, showing cytotoxicity in several cancer cell lines with an IC50 

ranging from 4.4 to 39.2 μM after 24 and 48 h of incubation, respectively.  These promising results in 

vitro have motivated in vivo studies in solid and metastatic melanoma in mice which demonstrated that 

vernoniyne at doses of 5.43 and 54.34 μmol.kg
-1

 was able to reduce the tumor mass by 65-80% and 

also to decrease the number of metastatic nodules induced by intravenous inoculation of B16F10 tumor 

cells.
9
 

As part of our efforts aimed at understanding the mechanism of action of the antitumor activity 

of vernoniyne, and in view of its low yield from natural sources, we became interested in the total 

synthesis of this natural product.  Deca-4,6,8-triyn-1-ol (1) was identified as a potential key 

intermediate in several possible synthetic approaches to 2. 
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Scheme 1.  Vernoniyne (2) and deca-4,6,8-triyn-1-ol (1) as a key synthetic precursor. 

The efficient synthesis of polyacetylenes can present a significant challenge due to the kinetic 

instability of the target molecules.  In addition, the synthesis of these compounds frequently proceeds 

via polyyne intermediates that are themselves of limited stability.
10

  Among the several established 

strategies for assembling unsymmetrical polyynes, the Cadiot-Chodkiewicz cross-coupling reaction
11

 

stands apart as the most popular and generally effective method for constructing these systems.  The 

classic Cadiot-Chodkiewicz protocol involves the copper(I)-catalyzed coupling of a terminal alkyne to 

a bromo alkyne in the presence of an amine such as diethylamine and hydroxylamine hydrochloride.
12

 

Several alternative strategies for the assembly of triynol 1 based on Cadiot-Chodkiewicz 

coupling reactions can be envisioned (Scheme 2).  While two prior syntheses of 1 were based on the 

Cadiot-Chodkiewicz coupling (vide infra), the most attractive route to date was reported by Luu and 

Tykwinski in 2006.
13

  Their seven-step synthesis began with 4-pentynol (5) and employed a Fritsch-

Buttenberg-Wiechell (FBW) rearrangement as a key step.  The Fritsch-Buttenberg-Wiechell reaction 

has been employed by Tykwinski for the synthesis of a variety of polyynes in an outstanding general 

strategy that circumvents many of the limitations associated with approaches based on the Cadiot-

Chodkiewicz coupling.
14

 

We based our investigation on the hope that recent work in our laboratory on the synthesis of 

iodo alkynes might enable the development of a shorter synthetic route to triynol 1 employing the 

Cadiot-Chodkiewicz coupling.  Four disconnections for the construction of the triynol based on the 

Cadiot-Chodkiewicz coupling are outlined in Scheme 2.  The first synthesis of 1 to be reported was 

disclosed by Cadiot, Chodkiewicz, and co-workers
15

 and involved disconnection a, specifically 

employing the coupling of 1,3-pentadiyne with a bromo alkyne of type 3.  In our view, approaches via 

disconnection a are less than ideal due to the need to employ volatile and relatively unstable 

pentadiyne as an intermediate.  In addition, the preparation of halo alkynes of type 3 is not 
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straightforward.  Our attempts to prepare 3 (X = Br) via bromination of pentynol proceeded in 

unsatisfactory yield and were complicated by formation of the cyclization product 9. 

 

Scheme 2.  Strategies for Assembly of Triynol 1 via Cadiot-Chodkiewicz Coupling. 

 

 

A second synthesis of triynol 1 based on the Cadiot-Chodkiewicz reaction was reported in 1966 

by Jones et al. and featured the coupling of heptadiynol 6 with bromopropyne (7, X = Br).
16

  This key 

coupling step proceeded in only 22% yield, however, and the author’s route to the diyne 6 began with 

explosive 1,3-butadiyne. 

 

Results and Discussion 

We have focused our efforts on developing a practical and scalable synthesis of triynol 1 based 

on variants of disconnection b.  Exploratory experiments involving coupling reactions of diynyl halides 

of general type 8 with propyne were not promising, and this approach also suffered in our judgment 

from the requirement to use propyne which is a gas and commercially available at reasonable price 

only as a mixture with allene and other gaseous impurities.  We therefore turned our attention to the 

alternate “6 + 7” strategy in Scheme 2 which is outlined in more detail in Scheme 3. 
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To avoid the use of 1,3-butadiyne or 1,3-pentadiyne, we envisioned preparing diynol 6 via a 

Cadiot-Chodkiewicz reaction of commercial pentynol 5 with TIPS-bromoacetylene (12).  Our plan for 

the key coupling step called for a Cadiot-Chodkiewicz reaction of 1-iodopropyne with diyne 6.  

Recently we reported a practical and convenient one-step synthesis of iodopropyne
17

 based on the in 

situ generation of propynyllithium from commercial 1-bromo-1-propene (13) using the general method 

of Suffert
18

 (Scheme 4).  In this fashion we expected this route to provide access to triynol 1 in as few 

as four steps in the longest linear sequence. 

 

Scheme 3.  Retrosynthetic analysis for triynol 1. 

 

 

Scheme 4.  Synthesis of 1-iodopropyne. 
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Our synthesis commenced with bromination of commercial (triisopropylsilyl)acetylene with N-

bromosuccinimide and catalytic silver nitrate according to the general method of Hofmeister
19

 to 

afford the desired bromo alkyne 12
20

 in 91% yield.  Note that the use of the TIPS-acetylene is 

necessary as it is known that (trimethylsilyl)alkynes undergo cleavage under the basic conditions of 

Cadiot-Chodkiewicz coupling reactions.
21

  Reaction of 12 with 4-pentyn-1-ol 5 in the presence of 

catalytic cuprous chloride (10 mol%), n-butylamine, and hydroxylamine hydrochloride then provided 

the diyne 11 in excellent (96%) yield.
22

  Desilylation of 11 proceeded smoothly upon exposure to 1.2 

equiv of TBAF in THF and furnished the terminal diyne 6
23

 as a brown oil in 88% yield.
24

  The 

terminal diyne 6 proved to be quite stable, remaining unchanged after storage for 3 months at 4 °C in 

solution in degassed dichloromethane. 

 

Scheme 5.  Synthesis of triynol 1.  Reagents and conditions: (a) NBS (1.2 equiv), AgNO3 (5 mol%), 

acetone, rt, dark, 2 h.  (b) 4-Pentyn-1-ol (5) (1 equiv), CuCl (10 mol%), NH2OH-HCl, 30% aq n-

BuNH2, CH2Cl2/MeOH (1:1), 0° C, 1.5 h.  (c) TBAF (1 equiv), THF, rt, 2 h.  (d) 1-Iodopropyne (10) 

(2 equiv), CuCl (10 mol%), NH2OH-HCl (1 equiv), 30% aq n-BuNH2, CH2Cl2/MeOH (1:1), 0 °C, 3 h. 

 

With ample supplies of diyne 6 in hand, conditions were examined for the key Cadiot-

Chodkiewicz reaction with 1-iodopropyne.  In the event, the desired coupling was achieved in 82% 

yield by employing the same conditions that were effective for the coupling of 5 and 12.  The desired 

triyne 1 was obtained as a pale yellow crystalline solid
25

 with spectroscopic data
26

 in accord with that 

reported previously.
13
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In summary, we have developed a practical and efficient route to the polyacetylene natural 

product deca-4,6,8-triyn-1-ol that proceeds in four steps in the longest linear sequence in 63% overall 

yield.  The application of this compound as an intermediate for the synthesis of vernoniyne and other 

bioactive polyacetylene natural products are currently underway in our laboratory. 
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 Deca-4,6,8-triyn-1-ol is most efficiently prepared by coupling iodopropyne with a heptadiynol 

 Iodopropyne can be synthesized in one step from bromopropene 

 The heptadiynol is synthesized via a Cadiot-Chodkiewicz coupling 

 


