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ABSTRACT

A high yielding procedure for preparation of various allenyl
mono-carboxylates is presented.
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Allenyl dicarboxylates[1] and their corresponding diesters[2] are readily
accessible five carbon synthons that have proven tremendously versatile.[3]

These systems undergo a myriad of reactions including [4þ2],[4] [3þ2],[5] and
[2þ2]-cycloadditions,[6] additions with radicals[7] and soft nucleophiles,[8] and
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sundry metal mediated couplings.[9] Recent reports of procedures for
dynamic kinetic resolution of allenyl carboxylates should significantly
increase their applications in enantioselective syntheses as well.[10]

However, differentiating the 1,3-dicarboxylate moieties in the adducts often
proves challenging. An obvious solution, using amono-carboxylate surrogate
in these processes, has been largely ignored because of the difficulty associated
with preparation of a non-symmetric allenyl system.

The previous method (b, Fig. 1) for syntheses of mono-carboxylate
allene derivatives begins with a propargylic alcohol 8, which is converted to
a robust propargylic ether and then coupled as the corresponding acetylide
with a two-carbon fragment such as an epoxide[2a] or a-diazoester.[11] The
coupling usually proceeds in less than 50% yield and examples employing
epoxides also require oxidation to an acid and conversion to an ester. The
resulting deconjugated ynoate is then isomerized into an allenyl system upon
treatment with a catalytic quantity of Et3N.

Our method (a, Fig. 1) begins instead with the homo-propargylic
alcohol 1. This is protected as an acid-labile ether. Formation of the
lithium acetylide and coupling with aldehydes, in this instance formalde-
hyde, proceeds in a far greater yield (>80%), than the umpolung cou-
plings of procedure b. The resulting propargylic alcohol can be displaced
with a variety of nucleophiles via a modified Mitsunobu reaction in good
yields. Jones oxidation of the labile homo-propargylic ether furnishes a
deconjugated ynoate that can be esterified and isomerized into the allenyl
system.

The differences between these processes may seem inconsequential,
however, allenes 7a–c (Sch. 1) illuminate the benefits of process (a).
Compounds 7a–c are not accessible by type (b) processes. The route to
these materials begins with 1, which is converted to the silyl ether 2 (94%)
by treatment with TBSCl and imidazole in CH2Cl2. Next, alkyne 2 is

Figure 1.
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deprotonated with n-BuLi. The corresponding lithium acetylide smoothly
adds to formaldehyde bubbled into the pot by cracking para-formaldehyde
in a separate flask under a nitrogen stream.[12] This combination
results in the formation of the propargylic alcohol 3 (93%), which is
displaced in good yields (82–93%) using a modified Mitsunobu pro-
cedure.[13] Trimethylacetic acid, as well as the thio-acids CH3COSH and
t-BuCOSH,[14] all smoothly couple under these conditions affording 4a–c,
respectively. Submitting the respective products, which contain an acid-
labile ether, to Jones conditions causes both deprotection and oxidation.
The resulting carboxylic acids 5a–c are readily purified by base extraction
into an aqueous phase followed by acidification and extraction into an
organic phase. Each acid is produced in >90% yield. The acids are
poised for conversion to any number of ester derivatives. However, we
had a need for a very labile ester derivative and chose to silylate 5a–c.
Treatment of each with a 1 : 1 equiv admixture of TMSCl–HMDS provides
6a–c, each respectively in>90% after Kugelrohr distillation (10�4 torr).
Submission of the pertinent silyl ester (0.05M in CH2Cl2) to a catalytic
quantity of Et3N (0.2 equiv) affords the desired allene monoester (cf. 7a–c)
in essentially quantitative yield. These allenes can be stored indefinitely
at �78�C. It is hoped that the procedure developed for the synthesis of
7a–c may expand the future prospects for allene mono-carboxylates in
synthesis.

Scheme 1. Procedure a.
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EXPERIMENTAL

Compound 2: To a solution of alcohol (1 equiv 1M in CH2Cl2) at 0
�C

under nitrogen was added imidazole (1.1 equiv) and t-butyldimethylsilyl
chloride (1.1 equiv) and a catalytic quantity of DMAP. The reaction was
stirred at 0�C for 1 h and slowly warmed to r.t. After stirring at 25�C for 4 h,
the reaction was diluted with ether/hexanes (4 : 1) and filtered through celite.
The solvent was evaporated and the material was purified by distillation
(45�C, 2 torr, 94%) to give the TBS ether as a colorless oil. 1H-NMR
(300MHz, CDCl3) � 3.76 (m, 2H), 2.42 (m, 2H), 1.98 (m, 1H), 0.92
(s, 9H), 0.08 (s, 6H).

Compound 3: To a solution of alkyne (1 equiv, 1M in Et2O) at �78�C
under nitrogen was added n-BuLi (1.1 equiv, 1.54M). The contents were
warmed to 0�C and stirred for 1 h. A nitrogen stream was passed through
a separate round bottom flask containing excess solid (CH2O)n heated to
150�C, through a clean glass tube, and bubbled into the Et2O solution of the
lithium acetylide at 0�C until the Et2O solution turned cloudy. The reaction
was diluted with ether and quenched with 5% aqueous citric acid solution.
The organic layer was separated, dried over Na2SO4 and filtered through
celite. After removal of solvent, the material was purified by distillation
(110�C, 0.2 torr, 87%) to give the propargyl alcohol as a colorless oil.
1H-NMR (300MHz, CDCl3) � 4.23 (m, 2H), 3.75 (m, 2H), 2.47 (m, 2H),
1.7 (br m, 1H), 0.97 (s, 9H), 0.07 (s, 6H).

Compounds 4a–c: To a stirred solution of PPh3 (2 equiv) 0.5M in
THF at 0�C was added DIPAD (2 equiv). A white precipitate resulted
after stirring for 1 h at 0�C. The propargyl alcohol was added neat
(1 equiv) and followed by the addition of the appropriate acid (2 equiv).
After stirring for 4 h, the volatiles were removed and the residue was taken
up in (hexanes : Et2O, 4 : 1), washed with aqueous NaHCO3, filtered
through celite and the volatiles were removed. This process was continued
until no solids remained. Drying and evaporation gives the respective
ester as a yellow oil. The S or O ester could be used directly in subsequent
Jones oxidation without purification. Compound 4a: 87% 1H-NMR
(300MHz, CDCl3) � 4.61 (t, 2H), 3.73 (t, 2H), 2.45 (m, 2H), 1.22 (s,
9H), 0.97 (s, 9H), 0.09 (s, 6H). Compound 4b: 82% 1H-NMR (300MHz,
CDCl3) � 3.72 (m, 2H), 3.68 (t, 2H), 2.47 (m, 2H), 2.42 (s, 3H), 0.97
(s, 9H), 0.08 (s, 6H). Compound 4c: 93% 1H-NMR (300MHz, CDCl3) �
3.72 (m, 2H), 3.63 (m, 2H), 2.41 (m, 2H), 1.32 (s, 9H), 0.97 (s, 9H), 0.08
(s, 6H).

Compounds 5a–c: To a stirred solution of the TBS–ether (1 equiv) in
acetone (0.25M solution) at �78�C was added Jones reagent (4 equiv of an
8M solution). The reaction was permitted to warm to 25�C and stirring
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was continued for 2 h. Upon completion by TLC analysis, isopropyl alco-
hol (1 equiv) was added slowly. After stirring for an additional 20min, the
reaction was diluted with ether and solids were removed by filtration
through celite. Volatiles were removed at reduced pressure and the residue
was dissolved in ether. After basification with saturated aqueous NaHCO3,
the organic phase was separated and discarded. The aqueous solution was
acidified with solid citric acid. After extraction with ether, the organic
layer was dried and the volatiles removed to give a crystalline white
solid. Compound 5a: 93% 1H-NMR (300MHz, CDCl3) � 7.5–5.0 (br,
1H), 4.71 (s, 2H), 3.48 (s, 2H), 1.22 (s, 9H). Compound 5b: 95% 1H-
NMR (300MHz, CDCl3) � 7.5–6.5 (br, 1H), 3.70 (s, 2H), 3.59 (s, 2H),
2.39 (s, 3H). Compound 5c: 94% 1H-NMR (300MHz, CDCl3) � 7.5–4.0
(br, 1H), 3.70 (s, 2H), 3.65 (s, 2H), 1.22 (s, 9H).

Compounds 6a–c: To a stirred solution of the acid (1 equiv 1M in
CH2Cl2) at 0

�C was added HMDS (1.1 equiv); followed by the slow addi-
tion of TMSCl (1.1 equiv). The reaction was permitted to warm to 25�C
and stirring was continued for 6 h. The reaction was then diluted with
ether and the solids were removed by filtration through celite. Once the
volatiles were removed, the cloudy material was purified by distillation
(0.01 torr) affording colorless oils. Compound 6a: 92% 1H-NMR
(300MHz, CDCl3) � 4.77 (s, 2H), 3.36 (s, 2H), 1.43 (s, 9H), 0.42 (s,
9H). Compound 6b: 94% 1H-NMR (300MHz, CDCl3) � 3.70 (s, 2H),
3.33 (s, 2H), 2.46 (s, 3H), 0.42 (s, 9H). Compound 6c: 92% 1H-NMR
(300MHz, CDCl3) � 3.70 (s, 2H), 3.38 (s, 2H), 1.28 (s, 9H), 0.42 (s, 9H).

Compounds 7a–c: To a stirred solution of the TMS-ester 0.5M in
CH2Cl2 at 0�C was added Et3N (0.2 equiv) and the reaction stirred at 0�C
for 6 h. The volatiles (Et3N) were removed, a crystal of Rose Bengal was
added for stabilization and the material was stored at �78�C for use in
subsequent reactions. Compound 7a: >98% 1H-NMR (300MHz, CDCl3)
� 5.73 (m, 2H), 4.65 (m, 2H), 1.25 (s, 3H), 0.38 (s, 9H). Compound 7b:>98%
1H-NMR (300MHz, CDCl3) � 5.71 (m, 2H), 3.61 (m, 2H), 2.44 (s, 3H), 0.41
(s, 9H). Compound 7c: >98% 1H-NMR (300MHz, CDCl3) � 5.71 (m, 2H),
3.54 (m, 2H), 1.27 (s, 9H), 0.41 (s, 9H).
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