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SUMMARY: The 2,2-dimethyl substituted 1,3-diradicals a possess significantly 

shorter triplet lifetimes (TT) than the parent 1,3-cyclopentadiyl 3, which is 

being rationalized on the basis of changes in the "through-bond" coupling and 

thus singlet-triplet energy splitting between the radical sites. 

The short lifetime (~,<0.1 ns) of the triplet 1,3-diradical 1 (no traPPins 

0 0 4 
(1) (2) (3) (9 

by molecular oxygen) was explained in terms of facile spirocyclopropane ring 

opening to the allyl-stabilized triplet 1,4-diradical 2 t?r-10 ns)." The fact 

that this resonance-stabilized diradical is, however, about lo-fold shorter 

lived than the parent triplet 1,3-cyclopentadiyl (a), for which rr-100 ns,ab*c 

was rationalized on the grounds that 2 is a flexible species (free rotation 

about the radical site in the side chain) while 3 is a rigid planar structure. 

Conformational effects were predicted by Salem3 to be important for efficient 

spin-orbital coupling in intersystem-crossing processes. 

On the basis of these lifetime data, one would anticipate that the triplet 

diradical 4, which possesses allylic stabilization as in 2 and the conforma- 

tional rigidity as in 3, should be a long lived (TV> 1000 ns) entity. Unfortuna- 

tely, it was so far not possible to prepare the azoalkane precursor to the 

triplet diradical 9, but the 2,2-dimethyl derivative 2 exhibited in the oxygen 

trapping method a lifetime much shorter than the flexible diradical 20 To dis- 

count steric impediments towards oxygen trapping by gem-dimethyl substitution, 

the related diradicals 59 and & were investigated. The spirocyclopropane moiety 
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(5) (6) (2) ak) Qk) 
CHz, 

p (X: CHI); k (X: CHz=C); E. (X: 1 
CH2' 

c) 

in the latter was to serve as "free radical clock"', which should lead to 

cyclopropylcarbinyl rearrangement products if r~>lO ns.' 

All three gem-dimethyl substituted 1,3-diradicals 5a;r; possess triplet 

lifetimes significantly shorter (about at least lOO-fold!) than the parent 1,3- 

cyclopentadiyl (2). We take this as evidence that gem-dimethyl substitution 

perturbs the slnglet-triplet energy gap LEsr) by changes in the "through-bond" 

coup1 ing between the radical sites in these triplet species. An optimal condi- 

tion for long-lived triplet ground state 1,3-diradicals is an exact balance 

between "through bond" and "through space" interactions.* In such cases a rela- 

tively large energy gap LE 87>2 kJ/mol) in favour of its triplet state prevails, 

so that spin-orbital coupling fca. 1 kJ/mol) is too weak for efficient inter- 

system-crossing and consequently a longer 1 ived triplet diradical species 

results, for example, the parent 1,3-cyclopentadiyl (2). 

The unknown azoalkanes h were prepared by acid-catalyzed cycloaddition 

of 4,4-dimethyl-4H-pyrazole trimer' with allene and methyienecyclopropane, re- 

spect ivel yd . The benzophenone-sensitized laser photolyses (Coherent, Innova 18) 

of azoalkanes w at 364 nm in CFCl,, n-tetradecane and n-hexadecane under ar- 

gon atmosphere led exclusively to the corresponding bicycloC2.1.0lpentanes w. 

No spirocyclopropane ring-opened products could be detected for azoalkane &. 

The unknown hydrocarbon products u were fully characterized.' Moreover, 

laser photolyses of the azoalkanes h were conducted according to the above 

conditions, but‘ under an oxygen atmosphere (10 atm). In the case of azoalkane 

&, the KIICHJCOZH or Fe(SCNII tests9 indicated that only traces (too little for 

isolation) of peroxidic products were present, but the oxygenated products & 

and Zk. presumably derived from the decomposition of intermediary peroxides, 

were isolated in ca. 11% total yield.8 When benzophenone triplet sensitizer was 

omitted, no such oxygenated products were formed. Only traces (too small for 

isolation) of oxygenated products were observed in the triplet sensitized photo- 

lysis of azoalkane & under 10 atm 0~ pressure, while for & the exclusive 

product was the bicyclopentane h. Control experiments confirmed that the hydro- 

carbons && were stable towards the photolysis*conditions in the presence of 

oxygen. 
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Steric factors cannot be the dominating feature responsible for the ineffi- 

cient oxygen trapping of the gem-dimethyl substituted 1.3-diradicals a com- 

pared to the parent 1,3-cyclopentadiyl (3). for which trapping under 10 atm 

oxygen pressure is ca. 1002!" Had the triplet lifetime of the 1,3-diradical k 

been similar to 9, spirocyclopropane ring-opened products should have been 

detected in the laser photolysis under argon atmosphere.' Thus, the lifetime of 

.% must be more than lOO-fold (upper limit) lower than that of the parent 

triplet 1,3-cyclopentadiyl Q), but not less than lOOO-fold (lower limit) since 

traces of oxygenated products were detected, i.e. 0.1 ns s TT Clr;) 5 1 ns. The 

lifetime of a must be below the diffusion limit, i.e. TV (a) < 0.1 ns, because 

not even traces of oxygenated products could be detected in the triplet-sensi- 

tized photolysis of azoalkane h under 10 atm Oz. For the allyl-stabilized 1,3- 

diradical a we estimate a triplet lifetime of TT (&I L 1 ns lower limit, 

because appreciable quantities (ca. 11%) of oxygen trapping products were iso- 

lated. Unfortunately it was not possible to perform quantitative product studies 

as a function of Coal in view of the thermal instability of the azoalkane & 

during capillary GC analysis. However, even these crude lifetime data clearly 

express that gem-dimethyl substitution in the 1,3-diradicals la;r leads to at 

least a lOO-fold diminution of the triplet lifetimes compared to the parent 1,3- 

cyclopentadiyl (2). 

What is responsible for this increased intersystem-crossing rate in these 

diradicals? The reasons must be sought in the gem-dimethyl substitution, a 

common feature in the diradicals 5a;s in contrast to the parent one 3. Since 

steric effects seem not to be appreciable (no spirocyclopropane ring-opening in 

&) and since conformational effects are essentially constant (planar structures 

according to molecular mechanics calculations" 1, we postulate that the aEa T 

energy gap is reduced as a result of perturbations in the balance of "through- 

bond" and "through-space" couplings. For the parent 1,3-cyclopentadiyl (3) this 

balance appears optimal since the energy gap is aEs~=3.8 kJ/mol in favor of a 

triplet ground state". However, for the gem-dimethyl substituted derivatives 

5a;r &Es, must be substantially less if spin-orbital coupling (ca. 1 kJ/mol)' iS 

to be efficient, in order to account for the fast intersystem-crossing and thus 

their short triplet lifetimes. In fact, the 1,3-diradicals a might have 

singlet ground states. In this context, it should be relevant to probe effects 

of other geminal substituents between the radical sites on the lifetime of 

triplet trimethylene diradicals. 
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