DEPSIPEPTIDES FROM METARHIZIUM ANISOPLIAE

M. PAÏS,* B. C. DAS* and P. FERRON†

* Institut de Chimie des Substances Naturelles, C.N.R.S., 91190-Gif-sur-Yvette, France; † Station de Recherches de Lutte Biologique, I.N.R.A., 78280-La Minière, France

(Revised received 14 July 1980)

Key Word Index-Metarhizium anisopliae; Fungi Imperfecti; new cyclodepsipeptides.

Abstract—From the culture medium of a strain of *Metarhizium anisopliae*, 14 depsipeptides have been isolated. Five of them were identified as known destruxins A, B, C, D and desmethyldestruxin B. The structures of the new compounds, named destruxins E, A_1 , A_2 , B_1 , B_2 , C_2 , D_1 , D_2 and E_1 , were established mainly from the mass spectral analysis of their corresponding open-chain derivatives.

INTRODUCTION

Fungi of the species *Metarhizium anisopliae* are known to cause diseases in several kinds of insects [1]. Toxic substances named destruxins have been isolated from submerged culture media and their structures shown to be 1 (destruxin A), 2 (destruxin B), 3 (destruxin C), 4 (destruxin D) and 5 (desmethyldestruxin B) [1, 2].

Besides the above-mentioned five compounds, we wish to report in this paper the isolation of nine new depsipeptides named destruxins E, A_1 , A_2 , B_1 , B_2 , C_2 , D_1 , D_2 and E_1 from the culture medium of a strain of *M*. *anisopliae*. Their structures, closely related to those of the known destruxins, were established to be 6, 7, 8, 9, 10, 11, 12, 13 and 14, respectively.

RESULTS AND DISCUSSION

The fungus was cultured on Czapek-Dox medium containing 0.5% peptone in a fermenter for 5 days. The mycelium was separated by centrifugation and the supernatant extracted with methylene chloride. Repeated chromatography of the extract on silica gel afforded pure destruxins A (1), B (2), E (6), A_1 (7), B_1 (9), B_2 (10) and a mixture of destruxins A_2 (8) and E_1 (14), further separated by reverse-phase HPLC. The more polar products were fractionated into acidic and neutral fractions. The neutral fraction was essentially a mixture of destruxins C (3) and $C_2(11)$ which could be separated by reverse-phase HPLC. The acidic fraction contained the carboxylic destruxins D (4), D_1 (12) and D_2 (13). After esterification with diazomethane, the corresponding esters 15, 16 and 17 were separated by silica-gel chromatography and reversephase HPLC.

The most abundant depsipeptides in the extract were destruxins A (1), B (2) and E (6). High resolution mass spectrometry of 6 established its molecular formula as $C_{29}H_{47}N_5O_8$; thus, destruxin E which had the same MW as destruxin B differed from the latter in having one carbon less but containing an additional oxygen. Four major peaks were observed in the mass spectrum at m/e M-57, M-85, M-142 and M-170, similar to those previously described for destruxins A and

B [3] and characteristic of the presence of N-methylvalyl-N-methyl-alanyl in the ring structure Alkaline opening of the lactone ring in the usual way afforded two products, one basic (18a) and the other neutral (19a), which were separated on Amberlite IR 120 resin. 18a was subjected to successive methylation and acetylation to give 18b, whose mass spectrum indicated the amino acid sequence shown in Fig. 1. 19a was also methylated and acetylated affording 19c. Mass spectral analysis of 19c suggested the presence of three O-acetyl groups on the hydroxy-acid unit. However, the exact structure of 19 was

R						
CH	· (CH.)			R'		R″
Í.	2 (CH 2)n			1		Ĩ
ÇΗ	-CO-N-C	H(CO-NH	CH		-N
ò-	-со-снсн	-N	н-со-	-СН-	-N-C	ю-сн
•				Ĩ	1	1
				Me	Me	CH
	R	n	R′		R″	
1	CH=CH ₂	3 C	HMeCH	Me	Me	
2	CHMe ₂	3 C	HMeCH	Me	Me	
3	CHMeCH ₂ OH	3 C	HMeCH	Me	Me	
4	CHMeCOOH	3 C	HMeCH ₂	Me	Me	
5	CHMe ₂	3 C	HMeCH ₂	Me	Н	
6	CH-CH2	3 C	HMeCH ₂	Me	Me	
	\searrow'					
7	$CH = CH_2$	4 C	HMeCH,	Me	Me	
8	$CH = CH_2$	3	CHMe ₂		Me	
9	CHMe ₂	4 C	HMeCH	Me	Me	
10	CHMe ₂	3	CHMe ₂		Me	
11	CHMeCH ₂ OH	3	CHMe ₂		Me	
12	CHMeCOOH	4 C	HMeCH ₂	Me	Me	
13	CHMeCOOH	3	CHMe ₂		Me	
14	CH-CH ₂	4 C	HMeCH	Me	Me	
	\sim					
15	CHMeCOOMe	3 C	HMeCH	Me	Me	
16	CHMeCOOMe	4 C	HMeCH ₂	Me	Me	
17	CHMeCOOMe	3	CHMe ₂		Me	

ascertained from the mass spectrum of the permethylated derivative 19d (Fig. 2).

On the foregoing basis, destruxin E was assigned structure 6 as 19a obviously resulted from alkaline opening of both epoxide and lactone rings, and 18a from a fragmentation reaction giving rise to an α -aldehydic amide 20 which is cleaved in an alkaline medium.

Confirmation of the structure of destruxin E (6) came from the comparison of its ¹³C NMR spectrum (Table 1) with those of destruxins A and B, and also from its correlation with destruxin A (1) through the following reaction sequence. 6 was converted with 48% hydrobromic acid in tetrahydrofuran to the bromhydrin 21, which was acetylated and further treated with zinc powder in aqueous acetic acid to give 1.

The other depsipeptides found in the extract, destruxin C(3), destruxin D(4), desmethyldestruxin (5) and the new destruxins A₁ (7), A₂ (8), B₁ (9), B₂ (10), C₂ (11), D₁ (12), D_2 (13) and E_1 (14) were minor components. The new compounds were obtained pure only in very small quantities because of the difficulty in resolving the mixtures. Structure assignment followed from ¹H NMR data (Table 2) and from the mass spectral analysis of both the depsipeptide (or its Me ester in the case of the carboxylic destruxins) and the corresponding linear esters 23-32, the mass spectra of the latter indicating the amino acid sequence (Table 3). The esters 23-29 were easily prepared by alkaline opening of the lactone ring and subsequent methylation and acetylation. In the case of destruxin E_1 , in which the α -hydroxy acid unit bears an epoxide ring, cleavage of the amide bond between the hydroxy acid and the vic-amino acid was observed as in destruxin E to afford 29, but no ring-opening product comparable to 19a was found. Compounds 30-32 were prepared by alkaline treatment of the carboxylic destruxins esters 15-17, followed by methylation with diazomethane. In these compounds the terminal lactone ring was obviously a result of internal esterification between the α -hydroxy acid carboxyl and hydroxyl groups, as previously described for destruxin D [2].

The structure thus assigned to the destruxins were confirmed by acid hydrolysis and subsequent amino acid analysis on cellulose TLC (Table 4). Destruxin E_1 (14) was further correlated with destruxin A_1 (7) through the sequence $11 \rightarrow 33 \rightarrow 7$ comparable to $6 \rightarrow 20 \rightarrow 1$. Destruxin C (3) was correlated with both the destruxin D ester 15 by oxidation with Jones reagent followed by esterification with diazomethane [2] and destruxin B

Fig. 1. Mass spectral fragmentation of 18b.

Fig. 2. Mass spectral fragmentation of 19d.

		Chemical	shifts (δ)*	
Carbon	Destruxin A (1)	Destruxin B (2)	Destruxin D Me ester (15)	Destruxin E (6)
<u>CH</u> ₃ CH ₂	11.4	11.4	11.4	11.3
Me NMeAla	15.2	15.3	15.3	15.3
<u>CH</u> ₃ —CH Ileu	15.5	15.3	15.3	15.2
<u>CH</u> ₃ (COOMe)CH			17.6	
Me Val	19.7	19.7	19.5	19.5
Me Val	20.1	20.1	19.7	20.0
Me acid		21.5		
Me acid		23.4		
NMe	24.1	24.2	24.2	21.1
NMe	24.5	24.5	24.5	24.5
CH ₂ Pro	27.3	27.3	27.3	27.3
$CO-\underline{CH}_2$ Pro (28.2	28.2	28.2	28.3
$CO \rightarrow \underline{CH}_2 \beta Ala $	29.2	29.0	29.3	29.3
CH Val	30.9	30.9	30.9	30.9
CH Ileu	33.3	33.3	33.3	33.3
CH_2 lleu	34.6	34.5	34.5	34.6
CH ₂ acid	35.0	24.5	35.6	33.7
COO <u>CH</u> ₃			33.3	_
$CH_2NH \beta Ala$	37.5	37.5	37.5	37.5
CH Me ₂ acid		39.1		
CH ₂ -NH Pro	46.8	46.6	46.6	46.8
$CH_2 - O$				47.2
CH-O				47.9
CH(Me) COOMe			52.0	
CHNH	53.8	53.8	53.8	53.7
CH-NH	55.7	55.6	55.6	55.6
CHNH	58.2	58.2	58.2	58.2
CH-NH	60.9	60.8	61.0	61.0
OCH-CO	72.9	72.1	71.6	70.8
$\underline{CH} = CH_2$	131.6			
$CH = CH_2$	119.7			
CO amide	169.3	170.0	169.1	169.0
CO amide	170.1	170.0	170.1	170.0
CO amide	171.3	171.3	171.3	171.2
CO amide	171.4	171.3	171.5	171.4
CO amide	174.4	173.9	173.8	173.4
CO amide	174.4	174.1	173.8	173.9
CO ester			176.4	

Table 1. ¹³CNMR data of destruxins 1, 2, 6 and 15

*In CDCl₃ at 60 MHz with TMS as internal standard.

† No assignment made for each carbon.

Destruxin Me-(N							
	Me _n (Ileu or/and MeVal) Val)	Me or Me ₂ acid	Me(Ala) $(d, J = 6.5 Hz)$	NMe (Ala)	NMe (Val)	CH=CH ₂	COOMe
A1 ←	0.80−0.98 (12H) ·····		1.30	2.72	3.22	5.78	
B 2	0.80-1.01 (18H)	•	1.29	2.71	3.21		
C3 (0.80−0.94 (12H)	1.02	1.30	2.72	3.21		
		(d, J = 6.5)					
Desmethyl B 5 ←	0.85-1.01 (18H)		1.31	2.73			
E 6 1	····· 0.80−0.98 (12H) ·····		1.31	2.73	3.22		
$A_1 7 \leftarrow$	0.79−1.03 (12H)		1.30	2.72	3.23	5.78	
A ₂ 8 +	0.76-1.00 (18H)	•	1.31	2.73	3.23	5.80	
B₁ 9 ←	0.78-1.02 (18H)	^	1.30	2.72	3.23		
B ₂ 10	0.85-1.02 (18H)	(1.31	2.73	3.23		
C ₂ 11 ←	····· 0.80−0.98 (12H) ·····	1.00	1.30	2.72	3.23		
		(d, J = 6.5)					
E ₁ 14 +	0.81−0.97 (12H)		1.30	2.72	3.22		
D ester 15	0.78−0.97 (12H)	1.25	1.30	2.72	3.22		3.69
		(d, J = 7)					
D_1 ester 16 \leftarrow	0.78−0.97 (12H)	1.25	1.30	2.72	3.22		3.67
		(d, J = 7)					
D_2 ester 17 \leftarrow	← 0.84-0.99 (12H) ← →	1.23	1.31	2.72	3.23		3.67
		(d, J = 7)					
*In CDCl ₃ at 250 MHz	with TMS as internal standard. Coupling c	onstants in Hz.					

*-
15-1
and
1-14
1.1
suixn.
- 11
dest
<u>ح</u>
data (
4R
~
Z
_
H
ä
Table

Table 3. Mass spectral fragmentation of destruxins 3, 5, 7-11 and 14-17 and of the corresponding open-chain derivatives 22-32

			Principal the mass s the depsig	peaks in pectra o peptides	n of S			Principal of the oj	peaks in pen-chain form	the mas derivati ulae)	s spectra ives (see		
Destruxin	Formulae	M+	M - 57 M - 85 M - 142 M - 170	m/e 70*	m/e 84†	Formulae	M+	a	ь	с	d	e	f
С	3	609	+	+		22	725	623	538	425	312	215	
Desmethyl B	5	579	_	+		23	653	550	466	367	212	157	129
A ₁	7	591	+	_	+	24	665	562	478	365	252	141	113
A ₂	8	563	+	+		25	637	535	450	337	238	141	113
B ₁	9	607	+	_	+	26	681	579	494	381	268	157	113
B ₂	10	679	+	+	-	27	653	551	466	353	254	157	129
C ₂	11	595	+	+	-	28	711	609	524	411	312	215	
\mathbf{E}_{1}	14	607	+	+	_	29	567	464	380	267	154		
D Me ester	15	637	+	_	+	30	637	535	450	337	224		99
D_1 Me ester	16	651	+	+		31	651	549	464	351	238		99
D_2 Me ester	17	623	+	+	-	32	623	521	436	323	224		99

* Ion $CH = \dot{N}H$ from proline unit.

† Ion CH = NH from pipecolic acid unit.

 $(\dot{CH}_2)_4$

	х	n	R'	R″
22	CH(OAc)CH ₂ CHMe ₂	3	CHMeCH ₂ Me	н
23	CH(OAc)CH ₂ CHMeCH ₂ OAc	3	CHMeCH ₂ Me	Me
24	$CH(OAc)CH = CH_2$	4	CHMeCH ₂ Me	Me
25	$CH(OAc)CH=CH_2$	3	CHMe ₂	Me
26	CH(OAc)CH ₂ CHMe ₂	4	CHMeCH ₂ Me	Me
27	CH(OAc)CH ₂ CHMe ₂	3	CHMe ₂	Me
28	CH(OAc)CH ₂ CHMeCH ₂ OAc	3	CHMeCH ₂ Me	Me
29	Ac	4	CHMeCH ₂ Me	Me
30	,0	3	CHMeCH ₂ Me	Me
31	}	4	CHMeCH ₂ Me	Me
32	$HC - CH_2 - CH - Me$	3	CHMe ₂	Me

Table 4. Amino acid analysis of destruxins 3, 5, 7-11, 14 and 15*

Destruxin	Formulae	Pro (0.15)	Pip (0.22)	Ileu (0.38)	Val (0.27)	NMeVal (0.35)	NMeAla (0.17)	βAla (0.09)†
С	3	+		+		+	+	+
Desmethyl B	5	+		+	+		+	+
A_1	7	~	+	+		+	+	+
A ₂	8	+	-		+	+	+	+
B ₁	9		+	+		+	+	+
B_2	10	+		-	+	+	+	+
C_2	11	+		-	+	+	+	+
\mathbf{E}_{1}	14		+	+		+	+	+
D Me ester	15	+		+		+	+	+
D ₁ Me ester	16		+	+		+	+	+
D ₂ Me ester	17	+		-	+	+	+	+

* TLC on cellulose (Merck) plates (MeCOEt-pyridine-H₂O-HOAc, 70:15:15:2) [4].

 $\dagger R_f$ value.

through the following route. On treatment with *p*-toluene sulfonyl chloride in pyridine, 3 gave the ester 34. Displacement of the *p*-toluene sulfonyl group with sodium iodide in methylethylketone afforded the iodo derivative 35, which on catalytic hydrogenation in the presence of Raney nickel gave destruxin B (2).

As for the stereochemistry of the destruxins, the S configuration has been previously assigned to the asymmetric α -carbon of the amino acids and the R configuration to the hydroxy acid α -carbon in destruxins A and B [2]. The correlations established above between destruxins E and A on the one hand, and destruxins C, D and B on the other allow the same configuration assignment for the ring carbons in destruxins C, D and E. These configurations are also very likely for the minor destruxins isolated here.

Destruxin D has been described previously [2] as a mixture of diastereoisomers yielding, by acid hydrolysis

and subsequent esterification with diazomethane, an equimolar mixture of the lactones 36 arising from the hydroxy acid unit. Acid hydrolysis of depsipeptide 15 also

afforded the lactones 36, which were separated by preparative HPLC, but one isomer was predominant (major: minor, 4:1). As the major lactone treated in the acid hydrolysis conditions gave again a mixture of the two lactones (major: minor 9:1), while the minor lactone remained stable, it is more likely that destruxin D ester 15 is a pure product (as shown also by ¹³CNMR spectroscopy and HPLC), the minor lactone arising from partial isomerization of the hydroxy acid γ -carbon during hydrolysis. Configuration assignment could not be made for the lactones 36 by ¹H NMR, but one can assume that the major lactone is the less stable isomer, namely the Z isomer 36a. As a consequence the R configuration is the most probable for the hydroxy acid γ -carbon in destruxins D and C.

The toxins produced by *M. anisopliae* appear to be more varied than has been previously described. Thus, differences are observed in the peptide chain: destruxins A_1 (7), B_1 (9), D_1 (12) and E_1 (14) contain pipecolic acid instead of proline occurring in destruxins A (1), B (2), C (3), D (4) and E (6), while destruxins A_2 (8), B_2 (10), C_2 (11) and D_2 (13) have value instead of isoleucine which is found in destruxins A, B, C and D. Although all possible products were not isolated, it is observed that any given α hydroxy acid is associated with three different peptide chains, which differ within the chain by only one amino acid. Furthermore, a new α -hydroxy acid unit was found in destruxins E (6) and E_1 (14), the peptide chain of which was identical to that of destruxins A, B, C. D and A_1 . B_1 , C_1 , D_1 , respectively. The names chosen for the new destruxins follow directly from the preceding considerations.

The major depsipeptide, destruxin E (6), was tested for its insecticidal activity against *Galleria mellonella* larvae and showed a toxicity comparable to that of destruxins A and B ([1]; J. Fargues and P. H. Robert, personal communication). These data, as well as the details of the biological activity of the main depsipeptides described here will be published elsewhere.

EXPERIMENTAL

Mps were uncorr. Optical rotations were measured at 20°. Column chromatography was carried out on Si gel Merck H 60 $(30 \times \text{ wt of product})$ except for the first separation. HPLC was performed on a Waters Associates apparatus (pump 6000 A, injector U6K, detection by refractive index); unless otherwise stated preparative separations (5 mg/injection) were carried out on two Microbondapak C-18 columns with a flow rate of 1.5–2 ml/min (eluant; MeOH-H₂O, 11:9).

Fungus and culture conditions. The strain used is designated MA 120 in the culture collection of 'Mycothèque INRA', La Minière, 78280 Guyancourt (France). The fungus was grown in submerged culture in Czapek–Dox broth containing 0.5% peptone. A 3001. capacity fermenter was seeded with a 3-day-old rotary shake culture which had been started by introduction of the spores in 3×61 . flasks containing 21. of medium. The fermenter was run at 250 rpm, 3001. air/min at 25° for 5 days.

Solvent extraction. The mycelium was removed from the culture by centrifugation and the supernatant repeatedly extracted with CH_2Cl_2 . Evapn of the solvent *in vacuo* gave 30 g of crude extract.

Isolation of destruxins. The crude extract (10g) was chromatographed on Si gel Zeozyl 45 (1.5 kg). Elution with CH₂Cl₂ containing increasing concns of MeOH (1–2%) gave 3 fractions, fractions I (2.7 g), II (3.7 g) and III (0.78 g). Further elution with CH₂Cl₂-MeOH (9:1) afforded fraction IV (1.1 g). Fraction I was rechromatographed (hexane-Me₂CO 7:3) yielding the following fractions.

Fraction	Weight	Destruxin (TLC)
I,	0.033	B ₁
I ₂	0.055	$B_1 + A_1 + B$
I ₃	0.764	В
I4	0.172	$\mathbf{B} + \mathbf{B}_2 + \mathbf{A}$
I ₅	1.20	Α
I ₆	0.330	$A + B_2 + E_1$

Destruxin B₁ (9) (fraction I₁) crystallized from C₆H₆-hexane. Mp 195°, $[\alpha]_D - 214°$ (CHCl₃, c 1). (Found: C, 61.75; H, 8.69; O, 19.03; N, 11.40. C₃₁H₅₃O₇N₅ requires: C, 61.26; H, 8.79; O, 18.43; N, 11.53 %).

Destruxin B (2) (fraction I₃) crystallized from C₆H₆-hexane. Mp 238°, $[\alpha]_D - 241^\circ$ (MeOH, c 0.5). Lit. [1]: mp 234°, $[\alpha]_D^{23} - 228^\circ$ (MeOH, c 0.5).

Destruxin A (1) (fraction I₅) crystallized from C₆H₆-hexane. Mp 126-129°, $[\alpha]_D - 230^\circ$ (MeOH, c 1). Lit. [1]: mp 125°, $[\alpha]_D^{15} - 225^\circ$ (MeOH, c 0.5).

Destruxin A_1 (7). Fraction I_2 was rechromatographed (hexane-Me₂CO, 3:1) to give destruxin A_1 (25 mg) which crystallized from C_6H_6 -hexane. Mp 209-210°, $[\alpha]_D - 226^\circ$ (CHCl₃, c 0.7). (Found: C, 60.71; H, 8.41; O, 19.10; N, 11.70. $C_{30}H_{49}O_7N_5$ requires: C, 60.89; H, 8.35; O, 18.93; N, 11.84%).

Destruxin B_2 (10). Fraction I_4 was rechromatographed (hexane-Me₂CO, 7:3) to give destruxin B_2 (20 mg) which crystallized from C_6H_6 -hexane. Mp 227-229°, $[\alpha]_D - 234°$ (CHCl₃, c 0.5). (Found: C, 59.80; H, 8.46: N, 11.96. $C_{29}H_{49}O_7N_5$ requires: C, 60.08; H, 8.52; N, 12.08%).

Destruxin A_2 (8). Fraction I₆ was rechromatographed (hexane-Me₂CO, 7:3) to afford a mixture of destruxin A_2 and E_1 (0.230 g) as shown by MS. This mixture (70 mg) was separated by prep. HPLC. Destruxin A_2 (35 mg) crystallized from C₆H₆-hexane. Mp 161-162°, [α]_D - 225° (CHCl₃, c1). (Found: C, 59.35; H, 8.02; N, 12.28. C₂₈H₄₅O₇N₅ requires: C, 59.66; H, 8.05; N, 12.43 %).

Destruxin E_1 (14) (15.mg) obtained from fraction I₆ (see destruxin A₂) was amorphous. [α]_D -261° (CHCl₃, c0.5).

Destruxin E (6). Chromatography of fraction II (CH₂Cl₂-MeOH, 49:1) gave destruxin E (2.53 g) which crystallized from C₆H₆-hexane. Mp 172-173° (dec.), $[\alpha]_D - 253°$ (CHCl₃, c 1). (Found: C, 58.45; H, 7.99; N, 11.75. C₂₉H₄₇O₈N₅ requires: C, 58.66; H, 7.98; N, 11.80%). HR MS: M⁺ 593.345; requires 593.348.

Desmethyldestruxin B (5). Fraction III was chromatographed (hexane-Me₂CO, 3:2) to give desmethyldestruxin B (70 mg), amorphous, $[\alpha]_D - 200^\circ$ (CHCl₃, c 1).

Fraction IV dissolved in CH_2Cl_2 was extracted with satd aq. NaHCO₃. The extract was washed, dried and evapd to dryness *in vacuo* to give a mixture F IV₁ (0.43 g). The aq. layer was acidified with N HCl and extracted with CH_2Cl_2 to give a mixture of carboxylic destruxins F IV₂ (0.610 g).

Destruxin C (3). Fraction IV₁ was rechromatographed (CH₂Cl₂-MeOH, 19:1) to give a mixture (0.15 g) of destruxins C and C₂, further separated by prep. HPLC. Destruxin C (80 mg) crystallized in C₆H₆-hexane. Mp 219-220°, $[\alpha]_D - 223^\circ$ (CHCl₃, c 1). Lit. [3]: mp 158-162° (perhaps mixture of diastereoisomers).

Dexstruxin C₂ (11) (20 mg) was obtained from fraction IV₁ (see destruxin C), amorphous. $[\alpha]_D - 230^\circ$ (CHCl₃), c 0.5).

Destruxin D_1 Me ester (15). Fraction IV₂ was methylated with $CH_2N_2-Et_2O$ in the usual way. The resulting Me ester was chromatographed (hexane-Me₂CO, 7:3) to give successively destruxin D_1 Me ester (23 mg), destruxin D Me ester (0.37 g) and a mixture of destruxin D Me ester 16 and destruxin D_2 Me ester 17 (0.12 g). Destruxin D_1 Me ester crystallized from Et_2O -hexane. Mp 166-168°. $[\alpha]_D -223^\circ$ (CHCl₃, c 0.5). (Found: C, 58.89; H, 8.09; N, 10.45. $C_{32}H_{53}O_9N_5$ requires: C, 58.96; H, 8.20; N, 10.75%).

Destruxin D Me ester (16) was obtained from fraction IV₂ (see destruxin D₁ Me ester 15) crystallized from Et₂O. Mp 225-226°. $[\alpha]_D = -240^\circ$ (CHCl₃, c 1). Lit. [3]: mp 235°.

Destruxin D_2 Me ester 17. Preparative HPLC of the mixture of destruxin D and D_2 Me ester (35 mg) obtained by chromatography of fraction IV₂ (see destruxin D₁ ester) gave pure destruxin D₂ Me ester (14 mg) which crystallized from Et₂O. Mp 254°. [α]_D - 227° (CHCl₃; c 0.5). (Found: C, 57.67; H, 7.80; N, 11.22. C₃₀H₄₉O₉N₅ requires C, 57.76; H, 7.92; N, 11.23%).

Ring-opening of destruxin E, derivatives 18 and 19. To a soln of destruxin E (6) (0.110 g) in MeOH (6.4 ml) was added 2 M NaOH (1.6 ml). The mixture was left 2 hr at room temp., neutralized (pH \simeq 6) with N HCl and evapd to dryness in vacuo. The residue was mixed with CHCl₃ MeOH (17:3). The ppt. (NaCl) was filtered off and the filtrate evapd to give a mixture of 18a and 19a (0.1 g) which was dissolved in H₂O (30 ml). This soln was passed through a column containing Amberlite IR 120 resin (5 ml) and evapd under red. pres. to give 19a (60 mg), which was esterified with CH₂N₂ to afford the crude ester 19b. Subsequent chromatography (CH₂Cl₂-MeOH, 9:1) gave the pure product (TLC) as an oil (40 mg). The peptide 18a was eluted from the resin with 15% NH₄OH and esterified with CH₂N₂ to give a crude ester which was purified by chromatography (CH₂Cl₂-MeOH, 19:1). To a soln of the pure ester (TLC, 22 mg) in MeOH (1 ml) was added Ac₂O (5 μ l). The mixture was left 30 min at room temp. and evapd to dryness *in vacuo* to afford **18b** as an oil.

19b (10 mg) was acetylated (Ac₂O--pyridine) overnight. Usual work-up afforded **19c** as an oil (10 mg). MS m/e: 769 (M⁺⁺), 667, 582, 469, 356, 259, 217. Permethylation of **19b** (1 mg) was carried out with MeI (500 μ l) in the presence of Na⁺ MeSOCH₂⁻ base (500 μ l) according to ref. [5] and gave **19d** as an oil.

Ring-opening of destruxin C (3), dexmethyldestruxin (5) and destruxins A_1 (7), A_2 (8), B_1 (9), B_2 (10) and C_2 (11); derivatives 22-28. To a soln of each destruxin (2 mg) in MeOH (0.4 ml) was added 2 M NaOH (0.1 ml). The mixture was left overnight at room temp, acidified with M HCl and extracted with CH_2Cl_2 . Evapn of the extracts afforded the open-chain acids (2 mg), which were methylated with CH_2N_2 and further acetylated (Ac_2O -pyridine) in the usual way to give the derivatives 22-28 (2 mg) as oils.

Ring-opening of destruxins D Me ester (15), D_1 Me ester (16) and D_2 Me ester (17); derivatives 29–31. To a soln of the destruxin ester (3 mg) in MeOH (0.4 ml) was added 2 M NaOH (0.1 ml). After 1 hr at room temp., the mixture was diluted with MeOH, demineralized with Amberlite IR 120 resin (1 ml) and evapd to dryness. The acids (3 mg) were esterified with CH₂N₂ to give the corresponding esters 29–31, which were purified by prep. TLC. IR

 δ_{max}^{film} cm⁻¹: 3300, 1650 and 1530 (CONH); 1780 (CONH); 178

lactone); 1730 (C=O ester).

Ring-opening of destruxin E_1 (14); derivative 32. To a soln of a mixture of destruxin A₂ and E_1 (0.15 g) in MeOH (0.4 ml) was added 2 M NaOH (0.1 ml). The mixture was left overnight at room temp., acidified with M HCl and extracted with CH₂Cl₂. The aq. phase was neutralized with M NaOH and evapd to dryness in vacuo. The residue was mixed with CHCl₃-MeOH (17:3). The ppt (NaCl) was filtered off and the filtrate evapd to give the crude peptide (21 mg), which was esterified with CH₂N₂. Chromatography (CH₂Cl₂-MeOH, 19:1) afforded a pure product (TLC, 10 mg) which was acetylated (Ac₂O-MeOH) to give **32** (10 mg) as an oil.

Destruxin A (2) from destruxin E (6). Bromhydrin 21: To a stirred soln of destruxin E (60 mg) in THF (5 ml) was added 48 % aq. HBr (0.03 ml). Stirring was continued for 5 min at room temp. satd aq. NaHCO₃ was added and the mixture extracted with CH_2Cl_2 to furnish the bromhydrin 21 (62 mg) as a colourless glass. MS m/e: 673-675 (M⁺), 616-618 (M⁺ - 57), 588-590 $(M^+ - 85)$, 511-513 $(M^+ - 142)$, 503-505 $(M^+ - 170)$. Destruxin A (2): The bromhydrin (60 mg) was acetylated (Ac₂O-pyridine) to afford the corresponding acetyl bromhydrin (60 mg). To a stirred suspension of Zn powder (100 mg) in HOAc-H₂O (2:1) (3ml) was added a soln of $CuSO_4 \cdot 5H_2O$ (20 mg) in H₂O (1 ml) and then a soln of the acetyl bromhydrin in HOAc (1.2 ml). The mixture was stirred for 6 hr at room temp., filtered and extracted with CH2Cl2. The extract was washed with satd aq. NaHCO3 and evapd to give destruxin A (44 mg) which crystallized from C₆H₆-hexane. It was identical in all respects (mp, $[\alpha]_D$, IR, NMR) to an authentic sample.

Destruxin A_1 from destruxin E_1 . As described for destruxin E, destruxin E_1 (10 mg) on treatment with 48 % aq. HBr in THF (1 ml of a 0.5 % soln) gave the bromhydrin 33 (10 mg) which was acetylated and further treated with Zn powder in aq. HOAc (Zn 100 mg, HOAc 1.6 ml, H₂O 0.5 ml, CuSO₄ · 5 OH₂ 10 mg) to give destruxin A_1 (7 mg) which crystallized from C₆H₆-hexane and was identical in all respects (mp, $[\alpha]_D$, IR, NMR) to an authentic sample.

Destruxin D ester (16) from destruxin C (3). To a stirred soln of destruxin C (30 mg) in Me₂CO (3 ml) was added, in small portions during 20 min, Jones reagent (0.05 ml). Stirring was continued for 10 min. The mixture was then diluted with H₂O, made alkaline with 10 % NH₄OH and extracted with Et₂O. The aq. phase was acidified with cone HCl and extracted with CH₂Cl₂. The extract was washed with H₂O, dried and evapd to give a residue (22 mg) which was esterified with CH₂N₂-Et₂O. The crude ester was purified by chromatography (hexane-Me₂CO, 7:3) to yield destruxin D Me ester (17 mg) which crystallized from Et₂O. It was identical in all respects (mp. [α]_D, IR, NMR) to an authentic sample.

Destruxin B (2) from destruxin C (3). Iodo derivative 35. To a stirred soln of destruxin C (40 mg) in pyridine (2 ml) was added ptoluene sulfonyl chloride (25 mg); stirring was continued for 60 hr at room temp. The mixture was then diluted with H₂O, washed with M HCl and H₂O. Evapn yielded the crude p-toluene sulfonic ester (33 mg) still containing destruxin C ($\simeq 20$ %) as shown by TLC and ¹H NMR (60 MHz CDCl₃; δ 2.40, s, CH₃ C₆H₄; 7.10-7.68, A2B2 system, C6H4). To a soln of this ester in MeCOEt (1.5 ml) was added NaI (20 mg). The mixture was refluxed for 30 min, diluted with H₂O and extracted with CH₂Cl₂. The extract was washed with a satd soln of Na₂S₂O₃ and evapd to give the crude iodo derivative, which was purified by prep. TLC (hexane-Me₂CO, 3:2). Pure 35 (17 mg) crystallized from C_6H_6 -hexane, mp 224°, $[\alpha]_D$ - 196°. (Found: C, 49.70; H, 6.89, C₃₀H₅₀O₅N₇I requires: C, 50.06; H, 7.00). MS m/e: 719 (M⁺), 662 (M^+ - 57), 634 (M^+ - 85), 577 (M^+ - 142) and 549 (M^+ - 170). Destruxin B (2): A soln of the iodo derivative 35 (12 mg) in EtOH (5ml) containing NEt₃ (5 μ l) was hydrogenated in the presence of Raney Ni (0.1g) overnight at atmos. pres. The catalyst was filtered off and the filtrate evapd in vacuo. The residue was dissolved in CH2Cl2 and this soln was washed with H_2O , dried and evapd to dryness to afford destruxin B (9 mg) which crystallized from C₆H₆-hexane. It was identical in all respects (mp, $[\alpha]_D$, IR, NMR) to an authentic sample.

Acid hydrolysis of destruxins. A soln of the destruxin (3-5 mg)in 6 M HCl-H₂O-HOAc (2:1:1) (1 ml) was refluxed overnight and then evapd to dryness under red. pres. Excess HCl was eliminated by co-evapn with CHCl₃-MeOH and the residue was analysed by TLC. Results are summarized in Table 4.

Lactones 36a and 36b. A soln of destruxin D Me ester 15 (0.3 g) in 6 M HCl-H₂O-HOAc (2:1:1) (30 ml) was refluxed overnight and evapd to dryness as described above for the acid hydrolysis of the other destruxins. The residue was dissolved in H₂O and passed through a column containing Amberlite IR 120 resin (15 ml). Evapn under red. pres. afforded a mixture of crude acids which were methylated with CH₂N₂ to give a crude mixture of the corresponding esters 36a and 36b, further purified by prep. TLC (CH₂Cl₂-MeOH, 95.5: 0.5). Analytical HPLC of the purified mixture [30 mg; MS m/e: 158 (M⁺), 140, 126, 114, 99, 71 (3)] on a microporasil column (flow rate 1.5 ml/min; cyclohexane-EtOAc, 4:1) showed the ratio 36a (R, 9 min) to 36b $(R_i, 7.2 \text{ min})$ to be 4:1 (peak integration). Prep. HPLC on two microporasil columns (flow rate 2 ml/min, same eluent) yielded pure 36a (20 mg) and 36b (4 mg) as oils. Lactone 36a. $[\alpha]_D + 15^\circ$ (CHCl₃, c 0.5). ¹H NMR (400 MHz, CDCl₃): δ 1.31 (3 H, d, J = 7 Hz, Me), 1.96 (1 H, ddd, J = J' = 9, J'' = 12 Hz, CHH), 2.7 (1 H, qdd, J = 7, J' = J'' = 9 Hz, CHMe), 2.77 (1 H, ddd, J = 9,J' = 7, J'' = 12 Hz, CHH), 3.82 (3 H, s, COOMe), 4.81 (1 H, dd, J = 7, J' = 9 Hz, CHCOOMe). Lactone **36b**. $[\alpha]D - 17^{\circ}$ (CHCl₃, c = 0.4). ¹H NMR (400 MHz, CDCl₃): δ 1.29 (3 H, d, J = 7 Hz, Me), 2.20 (1 H, ddd, J = 9, J' = 11, J'' = 13 Hz, CHH), 2.55 (1 H, ddd, J = 9, J' = 2.2, J'' = 13 Hz, CHH), 2.75 (1 H, qdd, J = 7, J' = 9, J'' = 11 Hz, CHMe), 3.80 (3 H, s, COOMe), 4.89 (1 H, dd, J = 2.2, J' = 9 Hz, CHCOOMe).

Acid treatment of lactones 36a and 36b. Each lactone was treated as $15 (36a 5 \text{ mg or } 36b 2 \text{ mg}; 6 \text{ M HCl-H}_2\text{O}-\text{HOAc}, 2:1:1, 1 \text{ ml})$. Analytical HPLC showed a ratio 36a: 36b 9:1 starting from 36a and of pure 36b starting from 36b.

Acknowledgements—We are grateful to Dr. J. Fargues for providing the fungus. We also thank Mr. A. Escaut, Ingenieur CNRS, for the fermenter culture and his help in the isolation of the destruxins.

REFERENCES

- Tamura, S. and Takahashi, N. (1971) in Naturally Occurring Insecticides (Jacobson, M. and Crosby, O. G., eds.) p. 499. Marcel Dekker, New York.
- 2. Suzuki, A., Tagushi, H. and Tamura, S. (1970) Agric. Biol. Chem. 31, 812.
- 3. Suzuki, A., Takahashi, N. and Tamura, S. (1970) Org. Mass. Spectrom. 4, 175.
- 4. Jutisz, M. and de la Llosa, P. (1963) Bull. Soc. Chim. Fr. 2914.
- 5. Nebelin, E. and Das, B. C. (1979) FEBS Letters 107, 254.