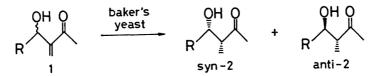
CHEMISTRY LETTERS, pp. 971-972, 1987.


Asymmetric Reduction of α -Methylene Ketones by Using Fermenting Baker's Yeast. Preparation of Optically Active β -Hydroxy α -Methyl Ketones

> Masanori UTAKA,* Shinji ONOUE, and Akira TAKEDA Department of Synthetic Chemistry, School of Engineering, Okayama University, Tsushima, Okayama 700

Asymmetric reduction of 4-hydroxy-3-methylenealkan-2-ones with baker's yeast afforded (3R, 4S)-4-hydroxy-3-methylalkan-2-ones in >98% ee and the (3R, 4R) isomers in 67->98% ee in ratios of 1:1-2.

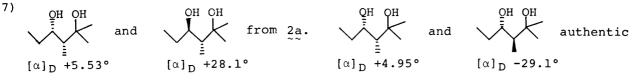
The use of baker's yeast as chiral reducing agent has shown its versatility by reducing the C=O bond of a variety of ketones with high optical purities.¹⁾ The reduction of the C=C bond has also been achieved as well, although it is mostly conjugated with a carbonyl group.¹⁾ To the best of our knowlege, however, the C=CH₂ bond has never been subjected to the yeast reduction. This may be mainly due to the difficulty of preparation of methylene compounds or α -methylene carbonyl compounds. Recently, a facile one step synthetic method for α -methylene carbonyl compounds has been reported,²⁾ which involves the reaction of aldehydes with methyl vinyl ketone with the aid of 1,4-diazabicyclo[2.2.2]octane (DABCO).

Herein we wish to report results of the baker's yeast reduction of β -hydroxy α -methylene ketones (1) that demonstrate a novel approach to *syn* and *anti* β -hydroxy α -methyl ketones (2) with moderate to high optical purities (Table 1). Such a class of ketones has been prepared by using the directed aldol reaction, in which much effort has recently been focused on the preparation of optically active aldols.³⁾

Table l.	Reduction	of β -Hydroxy	α -Methylene	Ketones ((<u>1</u>) to	β - Hydroxy	α -Methyl
Ketones (2) by Using	Fermenting	Baker's Yeast	:			

2 R		Time	Yield	a syn/anti	[α] ²⁵ a)		% ee		Config	
		h	8		syn	anti	syn	anti	syn	anti
2a	С ₂ н ₅	24	61	53/47	+44.0	+27.2	>98	>98	3 R ,4 S	3 R , 4 R
2b	n-C ₃ H ₇	27	64	42/58	+37.6	+26.5	>98	72	3 R ,4 S	3 R , 4 R
2c	$n - C_A H_q$	69	56 ^{b)}	33/67	+31.5	+22.5	>98	67	3 R ,4 S	3 R , 4 R
2đ	n-C ₅ H ₁₁	114	72	36/64	+26.7	+17.8	>98	69	3 R ,4 S	3 R , 4 R

a) In CHCl₃, c 1.0-1.2. b) Recovery of 1c was 8%.


A mixture of 10 g of glucose and 4 g of dry baker's yeast (from Oriental Yeast Co., immobilized with 1 g of sodium alginate⁴⁾) in 500 mL of water was stirred for 1 h at 30 °C. To this mixture 297 mg (2.09 mmol) of 1b was added and stirring was continued for 27 h. As the glucose was consumed, 20 g of glucose was added in four portions. The mixture was filtered and the filtrate was extracted with EtOAc. The crude oil obtained was passed through a silica gel column (hexane-EtOAc 10:1) to give 194 mg (64%) of 2b. Syn- and anti-2b were separated by HPLC (Yanapak SA-I, hexane-EtOAc 30:1) in a ratio of 42:58.⁵⁾ Their optical purities were determined to be >98 and 72% ee, respectively, by measuring ¹H NMR spectra in the presence of Eu(hfc)₃.⁶⁾

As observed in the reaction time and yield, the substrates l_a, b_a having a smaller group R are reduced much faster than l_c, d_a having a large group. The stereochemical course is found to be also highly dependent on the alkyl group R. Quite interesting is the fact that the optical purity is very high (>98% ee) for both *syn-* and *anti-la* while lowered (67-69% ee) for *anti-lc*, d, although a high value of >98% ee is still retained by *syn-lc*, d.

In order to determine the absolute configuration, syn- and anti-2a were converted to syn- and anti-2,4-dihydroxy-2,3-dimethylhexane with MeLi⁷) and these diols were compared with the authentic diols prepared from octyl <math>(S)-3-hydroxypen-tanoate.⁸) Thus, syn-2a was determined as 3R,4S and anti-2a as 3R,4R. The same configuration was assigned to 2b-d on the basis of the optical rotation measured. It can be concluded that the methylene group in la-d was reduced to give 2a-d with the R configuration in favor of the Prelog rule, irrespective of the stereochemistry of the adjacent hydroxy group.

References

- A. Fischli, "Modern Synthetic Methods," ed by Schefold, Salle-Sauerländer, Frankfurt (1982), Vol. 2, p. 269; "Koso Kino to Seimitsu Yuki Gosei," (Enzyme Functions and Highly Selective Organic Synthesis), ed by M. Ohno, CMC, Tokyo (1984); J. B. Jones, Tetrahedron, <u>42</u>, 3351 (1986).
- 2) D. Basavaiah and V. V. L. Gowriswari, Tetrahedron Lett., 27, 2031 (1986).
- 3) D. A. Evans, J. V. Nelson, and T. R. Taber, "Topics in Stereochemistry," ed by N. L. Allinger, E. L. Eliel, and S. H. Wilen, Wiley-Interscience, New York (1982), Vol. 13, Chap. 1; H. Heathcock, "Asymmetric Synthesis," ed by J. D. Morrison, Academic Press, Inc., Orlando (1984), Vol. 3, Chap. 2; K. Narasaka and T. Miwa, Chem. Lett., <u>1985</u>, 1217.
- 4) M. Kierstan and C. Bucke, Biotech. Bioeng., 19, 387 (1977).
- 5) $\delta(C_4-H)$ 3.86, $J_{3,4}=3.0$ Hz for syn-2b; $\delta(C_4-H)$ 3.59, $J_{3,4}=7.0$ Hz for anti-2b.
- 6) Determined by using the signal for the acetyl methyl group.

8) K. Mori, H. Mori, and T. Sugai, Tetrahedron, <u>41</u>, 919 (1985).

(Received February 5, 1987)

972