Note

Regioselective synthesis of α -L-fucosyl-containing disaccharides by use of α -L-fucosidases of various origins

Katsumi Ajisaka and Mayumi Shirakabe

Meiji Institute of Health Science, Meiji Milk Products Co., Ltd., 540 Naruda, Odawara 250 (Japan) (Received December 7th, 1990; accepted for publication April 18th, 1991)

The α -L-fucosyl group is found, in glycoproteins or glycolipids, $(1 \rightarrow 2)$ -linked to a D-galactosyl residue, or $(1 \rightarrow 3)$ -, $(1 \rightarrow 4)$ -, or $(1 \rightarrow 6)$ -linked to a 2-acetamido-2-deoxy-D-glucosyl residue. Recently, Svensson and Thiem¹ reported an enzymic synthesis of methyl α -L-fucopyranosyl- β -D-galactopyranosides by a transglycosylation of the L-fucosyl residue of 4-nitrophenyl α -L-fucopyranoside (1) to methyl β -D-galactopyranoside with the aid of an α -L-fucosidase from porcine liver. However, a mixture of disaccharides containing a $(1 \rightarrow 2)$ - and $(1 \rightarrow 6)$ -linked α -L-fucosyl group was obtained with a ratio of $\sim 2:3$. Moreover, an enzyme obtained from microorganisms is desirable for a preparative-scale synthesis of oligosaccharides, as a large amount of enzyme can be obtained easily. We report herein the regioselective synthesis of disaccharides containing a $(1 \rightarrow 2)$ -, $(1 \rightarrow 3)$ -, and $(1 \rightarrow 6)$ -linked α -L-fucosyl group by use of α -L-fucosidases from various origin. These α -L-fucosyl containing disaccharides are important starting materials for the synthesis of higher mol. wt. oligosaccharides as components of glycoproteins or glycolipids.

On Q-Sepharose column chromatography of Aspergillus niger culture broth (Fig. 1), the α -L-Fucosidase activity was found in Peak A, together with α -D-glucosidase activity, but most of the other glycosidase activities appeared in Peaks B and C. Therefore, α -L-fucosidase from Aspergillus niger could be purified up to ~ 33 times by a one-step procedure. The collected fractions contained α -D-glucosidase activity (0.056 unit/mg), β -D-galactosidase activity (0.036 unit/mg), and β -D-mannosidase activity (0.031 unit/mg), together with α -L-fucosidase activity (0.033 unit/mg). This semipurified enzyme preparation was used in the following experiments without further purification.

Incubation of 1 and D-glucose in the presence of semipurified α -L-fucosidase was examined by l.c. (see Fig. 2). Peak B showed a molecular ion at m/z 327 for $[M + H]^+$ in SIMS mode mass spectrometry. After purification of Peak B on an activated carbon column chromatography, the ¹H- and ¹³C-n.m.r. spectra of the disaccharide were recorded and analyzed on the basis of a relayed-COSY and a ¹H-¹³C hetero-COSY spectra (Table I). The data were in agreement with those of methyl 3-O- α -L-fucopyrano-syl- α -(2) and - β -D-glucopyranoside (3), as reported by Baumann *et al.*² In the ¹H-n.m.r.

Fig. 1. Q-Sepharose column chromatography of Rhozyme: (—) Total protein content, (- $\bullet - \bullet -$) α -L-fucosidase activity, and (- $\cdot - \cdot -$) concentration of NaCl.

8

Fig. 2. L.c. pattern of the reaction between 1 and D-glucose in the presence of α -L-fucosidase from *Aspergillus niger* measured by a Bio-LC system: (A) L-fucose, (B) L-fucosyl-D-glucose, (C) D-glucose, and (D) 4-nitrophenyl α -L-fucopyranoside (1).

spectra of α -L-fucosyl-containing oligosaccharides, H-5 of the α -L-fucosyl residue is known to exhibit chemical shifts characteristic for the linkage of the L-fucosyl group³. The chemical shift of H-5 for the present disaccharide was at δ 4.38, and that for the corresponding methyl glycosides, 2 and 3, were reported at δ 4.33 and 4.32, respectively. Therefore, the disaccharide was identified as 3-O- α -L-fucopyranosyl-D-glucose (4).

Similarly, when 1 was treated with 2-acetamido-2-deoxy-D-glucose in the presence of the same enzyme preparation, only one peak was observed in the disaccharide region of l.c. In the spectra of the purified disaccharide (see Fig. 3 and Table I), H-5 of

Fig. 3. ¹³C-N.m.r. spectrum of 5. Abbreviatiors: F = L-fucose; G = 2-acetamido-2-deoxy-D-glucose; α and β correspond to the anomeric forms of the reducing residue.

TABLE I

Residue or group		Compound						
		2ª	3"	4		5		
				a anom."	β anom. ^b	α anom. ^b	β anom. ^b	
¹ H-n.m.r.								
Fuc	H- 1	5.20	5.24	5.27	5.27	5.07	5.10	
	H-2	3.81	3.81	3.79	3.79	3.79	3.79	
	H-3	3.88	3.88	3.89	3.89	3.90	3.90	
	H-4	3.83	3.80	3.82	3.82	c	c	
	H-5	4.33	4.32	4.38	4.38	4.40	4.40	
	H-6	1.20	1.21	1.15	1.15	1.26	1.27	
Gle	H_1	4 78	4 38	5 77	4 60	5 74	4.67	
011	H_2	3 73	3.45	3.71	3 /3	J.24 A 11	3.70	
CIAN AC	11-2 Ц 2	3.73	3.43	3.71	3.43	4.11	3.70	
GIUNAC	п-5 Ци	3.75	3.00	2.70	3.39	2.07	2.61	
	11-4 U 5	2.66	3.40 2.47	5.40 c	J.47 c	2.04	5.54 c	
	H-J H 6a	2.00	3.4/	c	c	5.70 c	c	
	п-0а Н_65	3.70	3.73	c	c	c	c	
N <i>H</i> COC	Н,	5.07	3.92			2.19	2.19	
Bern	-							
^{ro} C-n.m.r.	Cl	100.4	100.4	100.4	100.4	100.0	101 1	
Fuc	C-1	60.2	60.3	60.2	60.1	60.2	40.2	
	C-2	70.6	70.6	70 4	70.4	70.9	09.5	
	C-3	70.0	70.0	70.4	70.4	72.0	73.0	
	C-4	12.0	12.0	12.0	12.0	/ 3.U	73.0	
	C-5	07.7	07.0	07.7	0/./	00.1	08.1	
	C-0	10.1	10.1	10.1	10.1	23.5	23.2	
Glc	C-1	100.1	103.9	93.0	96.6	92.3	95.9	
or	C-2	72.6	74.3	72.5	75.5	54.9	57. 6	
GlcNAc	C-3	81.7	84.0	80.8	83.8	79.3	81.8	
	C-4	69.2	69.3	69.0	69.0	69.8	69.9	
	C-5	72.5	76.8	72.8	76.7	73.1	77.2	
	C-6	61.7	61.8	61.5	61.7	62.0	61.9	
NHCOC	H,					1 6.7	16.4	

¹H- and ¹³C-N.m.r. data (δ values) of (1 \rightarrow 8)-linked α -L-fucosyl disaccharides

^{*a*} Values reported by Baumann *et al.*^{*b*} α or β Anomer of D-glucose or 2-acetamido-2-deoxy-D-glucose residue. ^{*c*} Not determined.

the α -L-fucosyl group appeared at δ 4.40, and C-3 of the α and β anomer of the 2-acetamido-2-deoxy-D-glucose residue at δ 79.3 and 81.8, respectively. The lower-field shifts of the C-3 signals indicated that the L-fucosyl group is bound to O-3 of the 2-acetamido-2-deoxy-D-glucose residue and, therefore, the structure of this disaccharide is 2-acetamido-2-deoxy-3-O- α -L-fucopyranosyl-D-glucose (5).

Subsequently, 1 was treated with methyl β -D-galactopyranoside in the presence of α -L-fucosidases from various origin. Among the enzymes studied, α -L-fucosidases from *Corynebacterium* sp., and from ampullaria afforded transglycosylated products. Fig. 4

Fig. 4. L.c. pattern of the reaction between 1 and methyl β -D-galactopyranoside in the presence of α -L-fucosidase from *Corynebacterium* sp., measured by use of LiChrospher-NH₂ column: (A) α -L-fucose, (B) methyl β -D-galactopyranoside, and (C) methyl 2-O- α -L-fucopyranosyl- β -D-galactopyranoside (6).

TABLE II

Residue or		Compound or group					
group		6	8	7			
				a anom.ª	β anom.ª		
Fuc	C-1	101.2	100.5	102.4	101.0		
	C-2	69.5	69 .1	69.5	69.5		
	C-3	70.7	70.5	70.5	70.6		
	C-4	73.1	72.8	72.8	73.0		
	C-5	68.0	67.9	68.4	67.9		
	C-6	15.3	15.5	16.3	16.2		
Gal	C-1	103.9	105.1	93.0	96.3		
	C-2	79.3	71.8	79.2	80.3		
	C-3	74.3	74.6	70.4	74.4		
	C-4	69.9	69.8	69.2	69.9		
	C-5	76.0	73.9	71.2	76.1		
	C-6	62.1	68.5	62.2	62.0		
	OCH ₃	58.2	58.3				

¹³C-N.m.r. data (δ values) of α -L-fucosyl-D-galactose derivatives

" α or β Anomer of D-galactose residue.

shows a representative l.c. pattern of the reaction mixture incubated in the presence of α -L-fucosidase from *Corynebacterium* sp., Peak C indicating a newly produced disaccharide. The disaccharide was purified by chromatography on an activated-carbon column and was identified as methyl 2-O- α -L-fucopyranosyl- β -D-galactopyranoside (6) by its ¹H- and ¹³C-n.m.r. spectra (Table II). On the other hand, the reaction mixture that

was incubated in the presence of α -L-fucosidase from ampullaria afforded methyl 6-O- α -L-fucopyranosyl- β -D-galactopyranoside (8) (Table II). In the ¹³C-n.m.r. spectrum of 6, C-2 of the D-galactopyranosyl residue resonated at δ 79.3, which was 7.5 p.p.m. down-field from the C-2 signal of methyl β -D-galactopyranoside. In the ¹³C-n.m.r. spectrum of 7, C-6 of the D-galactopyranosyl residue also showed a lower-field shift of 5.9 p.p.m. These lower-field shifts indicated a binding of the L-fucosyl group to O-2 and O-6 of the D-galactopyranosyl residue, respectively. Although Svensson and Thiem¹ had synthesized a mixture of 6 and 7 by use of an α -L-fucosidase from porcine liver, we could synthesize 6 and 7 separately by use of α -L-fucosidase from *Corynebacterium* sp. or ampullaria. In the presence of an α -L-fucosidase from *Corynebacterium* sp., 1 and D-galactose gave 2-O- α -L-fucopyranosyl-D-galactose (7) by a reaction similar to that giving 6 (see Fig. 5).

In the transglycosylation reaction, the accumulation of disaccharides depends on a delicate balance between formation and hydrolysis reaction. Even in the reaction using α -L-fucosidase from *Fussarium oxysporum* or bovine liver, which did not give any disaccharide (data not shown), a disaccharide might have been formed but an hydrolysis reaction occurred as soon as it was formed. In the reaction using an α -L-fucosidase from *Aspergillus niger*, no reaction occurred when methyl β -D-galactopyranoside was the acceptor. Similarly, α -L-fucosidases from *Corynebacterium* sp. and ampullaria did not show transglycosylation activity when D-glucose or 2-acetamido-2-deoxy-D-glucose was used as an acceptor, which indicated that each α -L-fucosidase has an unexpectedly strict substrate specificity. *Aspergillus niger* has been reported to produce two different α -L-fucosidases, one that cleaves selectively the α -L-(1 \rightarrow 2) linkage⁴, and another that hydrolyzes only the α -L-(1 \rightarrow 6) linkage⁵. The present semipurified α -L-fucosidase preparation hydrolyzed the α -L-(1 \rightarrow 2), but failed to cleave the α -L-(1 \rightarrow 6) linkage. Moreover,

Fig. 5. ¹³C-N.m.r. spectrum of 7. Abbreviations: G = D-galactose; for other abbreviations, see legend to Fig. 3.

TABLE III

Acceptor	Origin of enzyme	Linkage	Yield (%)	
β-D-GalOMe	Corynebacterium sp.	α-L-(1→2)	25	
D-Gal	Corynebacterium sp.	α -L-(1 \rightarrow 2)	18	
D-Glc	Aspergillus niger	α-L-(1→3)	61	
D-GicNAc	Aspergillus niger	α -L- $(1 \rightarrow 3)$	58	
β-D-GalOMe	Ampullaria	α -L- $(1 \rightarrow 6)$	14	

Synthesis of α -L-fucosyl-containing disaccharides with various α -L-fucosidases

the present enzyme preparation did not hydrolyze 3-O- α -L-fucosyllactose, as had been reported⁴. However, it hydrolyzed 4 and 5, which were not examined by Bahl⁴. The α -L-fucosidase from *Aspergillus niger* used in the present study may be the same one as that used by Bahl⁴.

 α -L-Fucosyl-containing disaccharides, components of glycoconjugate, were synthesized easily and regioselectively by selection of the appropriate enzyme (see Table III). These syntheses could be extended to a large scale. For example, about 1 g of 5 could be obtained by use of the α -L-fucosidase from *A. niger*; in that case a large-bore, activated-carbon column (7 × 80 cm) was used for the purification of the product.

EXPERIMENTAL

Materials. — α -L-Fucosidases (EC 3.2.1.51) from *Corynebacterium* sp. and ampullaria were purchased from Takara Shuzou Co., Ltd. (Kyoto, Japan) and Funakoshi Pharmaceuticals Co. Ltd. (Tokyo, Japan), respectively. Both enzymes were used without further purification. As a source of *Aspergillus niger* culture broth, "Rhozyme" was purchased from Genecor Inc. (CA, USA). Q-Sepharose and MONO-Q column were obtained from Pharmacia–LKB, (Uppsala, Sweden).

Analytical procedures. — ¹H- and ¹³C-N.m.r. spectra were recorded with a Varian XL-400 n.m.r. spectrometer operating at 400 and 100 MHz, respectively. In ¹³C-n.m.r. spectra, chemical shifts were referred to the methyl signal of internal acetonitrile (δ 1.27). The mass spectrum was recorded with an Hitachi M-2000 mass spectrometer operating in the SIMS mode. Two types of l.c. were employed for the analysis of transglycosylation reaction. One was a Bio-LC system (Dionex Co., CA, U.S.A.), equipped with a Carbopac PA1 column and a pulsed amperometric detector, and a 100mm NaOH solution was used as an eluent. The other was a reversed-phase l.c. using LiChrospher-NH₂ column (Merck) and RI detector, and 4:1 acetonitrile–water as eluent. The yields in the transglycosylation reaction were calculated on the basis of 1.

Semipurification of α -L-fucosidase. — Rhozyme (2.8 g) was dissolved in 20mm potassium phosphate buffer (280 mL; pH 7.0) and dialyzed extensively against the same buffer (pH 7.0). The Rhozyme solution was applied onto a Q-Sepharose column (2.6 \times 30 cm) which was eluted with a salt gradient from 0 to 0.5M NaCl in 20mm potassium phosphate buffer (pH 7.0, 2 L in total). Fractions containing α -L-fucosidase activity

were pooled and concentrated to 2mL by a membrane filtration with Amicon PM-30. α -L-Fucosidase activity, measured with 1 as a substrate, was 0.37 unit/mL.

Synthesis of 3-O- α -L-fucopyranosyl-D-glucose (4). — D-Glucose (125 mg) and 1 (25 mg) were dissolved in 0.1M acetate buffer (pH 5.0, 2.5 mL) and N,N-dimethylformamide (250 μ L). The semipurified α -L-fucosidase solution (200 μ L, 0.074 unit) was added to the substrate solution, and the mixture was incubated for 12 h at 37°. The reaction mixture was heated in a boiling water bath for 10 min, the denatured enzyme was filtered off, and the filtrate was applied onto an activated carbon column (2 × 45 cm). The monosaccharides were washed with water (500 mL), and the disaccharide was eluted with a gradient of 0–20% ethanol (v/v) in water (1 L in total). The carbohydrate content of each fraction was measured with the phenol–H₂SO₄ reagent⁶. Fractions containing the disaccharide with a purity > 95% were pooled and concentrated to dryness to give 4 as an amorphous solid (17.5 mg, 61% yield).

Anal. Calc. for C₁₂H₂₂O₁₀:C, 44.17; H, 6.80. Found: C, 43.99; H, 6.77.

2-Acetamido-2-deoxy-3-O- α -L-fucopyranosyl-D-glucose (5). — 2-Acetamido-2-deoxy-D-glucose (125 mg) and 1 (25 mg) were condensed, as described for the synthesis of 4 to give 5, an amorphous solid (17,3 mg, 58% yield).

Anal. Calc. for $C_{14}H_{25}O_{10}$: C, 45.77; H, 6.86; N, 3.81. Found: C, 45.54; H, 6.66; N, 3.95.

Methyl 2-O- α -L-fucopyranosyl- β -D-galactopyranoside (6). — Methyl β -D-galactopyranoside (194.2 mg) and 1 (28.5 mg) were dissolved in 0.1M potassium phosphate buffer (pH 8.0, 900 μ L) and dimethyl sulfoxide (300 μ L). α -L-Fucosidase from Corynebacterium sp. (5 μ L, 0.1 unit) was added and the solution was incubated for 16 h at 37°. The processing was the same as described above for the synthesis of 4, except that the activated carbon column was eluted with a gradient of 0–40% ethanol (v/v) in water (1.2 L in total) to give 6 as an amorphous solid (8.5 mg, 25% yield).

Anal. Calc. for C₁₃H₂₄O₁₀: C, 45.88; H, 7.11. Found: C, 45.66; H, 7.36.

2-O- α -L-Fucopyranosyl-D-galactose (7). — D-Galactose (360 mg) and 1 (57 mg) were dissolved in 0.1M potassium phosphate buffer (pH 8.0, 3.8 mL) and dimethyl sulfoxide (1.2 mL), and α -L-fucosidase from Corynebacterium sp. (20 μ L, 0.4 unit) was added. The mixture was incubated for 16 h at 37°, and 7 was obtained as an amorphous solid (11.4 mg, 18% yield) as described for the synthesis of 4.

Anal. Calc. for C₁₂H₂₂O₁₀: C, 44.17; H, 6.80. Found: C, 44.46; H, 6.47.

Methyl 6-O- α -L-fucopyranosyl- β -D-galactopyranoside (8). — Methyl β -D-galactopyranoside (194.2 mg) and 1 (28.5 mg) were dissolved in 0.1M acetate buffer (pH 5.0, 900 μ L) and dimethyl sulfoxide (300 μ L). α -L-Fucosidase from ampullaria (50 μ L, 0.2 unit) was added and the mixture was incubated for 16 h at 37° to give 8 as an amorphous solid (4.9 mg, 14% yield), as described for the synthesis of 6.

Anal. Calc. for C₁₃H₂₄O₁₀: C, 45.88; H, 7.11. Found: C, 45.72; H, 7.22.

REFERENCES

- 1 S. C. T. Svensson and J. Thiem, Carbohydr. Res., 200 (1990) 391-402.
- 2 H. Baumann, P. E. Jansson, and L. Kenne, Chem. Soc., Perkin Trans. 1, (1988) 209-217.
- 3 A. Klein, G. Lamblin, M. Lhermitte, P. Roussel, J. van Breg, H. van Halbeek, and J. F. G. Vliegenthart, Eur. J. Biochem., 171 (1988) 631-642.
- 4 O. P. Bahl, J. Biol. Chem., 245 (1970) 299-304.
- 5 S, Yazawa, R. Madiyalakan, R. P. Chawda, and K. L. Matta, Biochem. Biophys. Res. Commun., 136 (1986) 563-569.
- 6 M. Dubois, K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith, Anal. Chem., 28 (1956) 350-356.