QUASSINOIDS FROM QUASSIA AMARA

P. BARBETTI,* G. GRANDOLINI, G. FARDELLA and I. CHIAPPINI

Istituto di Chimica Farmaceutica e Tecnica Farmaceutica, Universita' degli Studi Perugia, 06100 Perugia, Italy

(Received in revised form 1 July 1992)

Key Word Index-Quassia amara; Simarubaceae; wood; quassinoid glycosides; quassinoids.

Abstract—Three new quassinoids, $11-\alpha$ -O-(β -D-glucopyranosyl)-16- α -O-methylneoquassin, $1-\alpha$ -O-methylquassin and 12- α -hydroxy-13,18-dehydroparain have been isolated and identified from Quassia amara wood. In addition, 16- α -O-methylneoquassin and 11-acetylparain were isolated for the first time from a natural source. The structures of all compounds were determined by spectroscopical methods as well as by chemical correlations. The reaction products of the NaBH₄ reduction and of the alkaline isomerization of parain were also investigated.

INTRODUCTION

Quassia amara wood is still widely used in traditional medicine and recently some quassinoids and quassinoid glycosides isolated from plants of the Simarubaceae have received renewed attention due to their biological activity as potential antitumour agents [1–6] as well as antiulcer agents [7]. Stimulated by these findings we continued our research [8–10] on the minor components from Quassia wood.

This paper describes the isolation and identification of a new quassinoid glycoside, namely $11-\alpha$ -O-(β -D-glucopyranosyl)-16- α -O-methylneoquassin (1) besides the known methylglucoside 4 from methanol extracts of the wood, and of the two new quassinoids, 1-a-O-methylquassin (10) and $12-\alpha$ -hydroxy-13,18-dehydroparain (19) from chloroform extracts. Moreover, 16-a-O-methylneoquassin (6) and 11-acetylparain (12) have been isolated for the first time as natural products. The chemical and stereochemical structures of all the compounds have been assigned by means of spectral studies (IR, ¹H and ¹³C NMR) and by chemical correlations. (Schemes 1-4). The products of the alkaline isomerization of parain (11) and of its reduction with NaBH₄, carried out in the presence and in the absence of NaOH, have been also investigated. (Scheme 3).

RESULTS AND DISCUSSION

The ¹H NMR (400 MHz) and ¹³C NMR (50.32) spectra of 1 and its acetylderivative 1a suggested the presence of

 β -D-glucopyranose and of a trimethoxylated quassinoid aglycone moiety, in which the relative configuration at C-16 (β -H) followed by comparison with the known compound **21** [8] (Tables 1–3). Acid hydrolysis of **1** [11], followed by CrO₃ oxidation, afforded 16- α -O-methylneoquassin which proved to be identical with the natural product **6** (Scheme 1, Tables 1 and 3). Moreover, the structure of **6** was proved by its identity with the methylated derivative (**7a**) of neoquassin (**7**) (TLC and ¹H NMR). Thus, the spectroscopical and chemical evidences provided a corroboration for the nature of **1** as an unusual 11- α -O-glucoside of 11- α -hydroxy-16- α -Omethylneoquassin (**2**) [12, 14].

The structure and stereochemistry of the new quassinoid 1- α -O-methylquassin (10) was assigned by means of ¹H and ¹³C NMR spectroscopy (Tables 1 and 3), as well as by chemical correlation with an authentic sample of quassin (8) (Scheme 2). Analogously the structure and the stereochemistry of the new quassinoid 12- α -hydroxy-13,18-dehydroparain 19 has been achieved by ¹H and ¹³C NMR examination and through its acetonide derivative **20** (Scheme 4, Tables 2 and 3).

The structures of the natural products 11-acetylparain (12) and $16-\alpha$ -O-methylneoquassin (6) also resulted from spectroscopic evidence (¹H and ¹³C NMR spectra in Tables 2 and 3) and from the chemical transformations reported in Schemes 1 and 3.

The reaction of parain 11 with NaBH₄/NaOH (Scheme 3) led, as expected [15], to the regioselective reduction of the carbonyl groups at C(1) and C(12). In fact, only one compound was isolated which was identified as 1-hydroxy-12- α -hydroxyparain (14) successively converted into the triacetylated derivative 14a.

The stereochemistry at C-11 and C-12 in 14 was assigned on the basis of ${}^{1}HNMR$ evidence (coupling constants of H-9, H-11 and H-12 are shown in Table 2) and chemical correlations. Firstly, 14 was acetonylated to

^{*}Author to whom correspondence should be addressed.

Preliminary results were presented at 1 er Congreso Conjunto Hispano-Italiano de Quimica Terapeutica, 19-22 September 1989, Granada, Spain.

give 15 which was then treated with CrO_3 to yield 16. The same compound 16 was obtained from paraine (11) in three steps, viz: by reduction with NaBH₄, followed by acetonylation and further Ag₂O oxidation (Scheme 3). In fact, the treatment of 11 with NaBH₄ in the absence of alkali reduced both the carbonyl group at C-12 and the lactone group, whereas the α,β -unsaturated ketone remained unchanged.

Unlike the case reported for quassin (8) [15], reduction of the C-1 carbonyl of 11 with NaBH₄/NaOH gave 14 which furnished ¹H and ¹³C NMR data which were not diagnostic for the C-1 stereochemistry (Tables 2 and 3), probably because of the absence of a carbonyl in C-11, while reduction of the C-12 carbonyl group of 11 occurred with α -hydroxystereoselectivity (14 and 17) in the two different reaction conditions (Schemes 2 and 3).

Finally, to correlate natural isoparain (18) with parain (11), we have submitted 11 to alkaline isomerization with

NaOH/EtOH obtaining 18 as the major reaction product. The further acetylation of 18, either natural or semisynthetic, gave the same monoacetyl derivative 18a (Scheme 3).

EXPERIMENTAL

General. Mps: uncorr. IR: CHCl₃ or KBr. UV: MeOH soln. ¹H NMR were recorded at 400 and 200 MHz using TMS as int. standard. ¹³C NMR were recorded at 50 MHz. Merck DC-Alufolien Kieselgel 60 F_{254} and Merck Kieselgel 60 were used for TLC and CC. A voucher specimen of *Quassia amara* L. had been deposited at the Herbarium of the Institute of Vegetal Biology, University of Perugia, Italy [8].

Extraction. Wood chips were exhaustively extracted with MeOH at room temp. and the extract evapd *in vacuo* as described in ref. [8]. H_2O and MeOH were then added

to the residue and the mixt. extracted with CHCl₃. The aq. alcohol sol. fr. was evapd to dryness yielding a crude powdered residue which was repeatedly treated with MeOH. The MeOH extract was then evapd *in vacuo* and the residue (125 g) was repeatedly flash-chromato graphed on silica gel columns. Elution with solvents of increasing polarity CHCl₃ \rightarrow CHCl₃-MeOH (4:1), CHCl₃ \rightarrow CHCl₃-MeOH-H₂O (21:21:8) yielded *inter alia*, methyl-D-glucoside (4) (320 mg) and 11- α -O-(β -Dglucopyranosyl)-16- α -O-methylneoquassin (1) (72 mg).

The CHCl₃ sol. fr. was evapd under red. pres. and the residue extracted with petrol as described in ref. [8]. The solvent was evapd to give 240 g of an oily residue, 9 g of which was dissolved in CHCl₃ and repeatedly flash-

chromatographed on silica gel columns using eluents of increasing polarity $CHCl_3 \rightarrow CHCl_3 - MeOH (9:1)$. Quassin (8) (205 mg), 11- α -acetylparain (12) (40 mg), parain (11) (120 mg), isoparain (19) (20 mg), [8], 11-dihydro-12norneoquassin (21) (30 mg) [8], 16, α -O-methylneoquassin (6) (25 mg) and neoquassin (7) (38 mg) were isolated and identified.

11-α-O-(β-glucopyranosyl)-16-α-O-Methylneoquassin (1). Isolated from MeOH extract, yield 52 mg, powder from EtOH, mp < 200° dec. IR v_{max}^{KBr} cm⁻¹: 3500-3300, 2980, 1430, 1070-1050. ¹H NMR: Table 1; ¹³C NMR: Table 3.

Acetylation of compound 1. Compound 1 (10 mg) was acetylated in Ac_2O -pyridine at room temp. Usual workup and chromatographic purification yielded 8 mg of the pure tetra-acetylated derivative 1a. ¹H NMR: Table 1.

Acid hydrolysis of compound 1. A soln of 1 (40 mg) in 1.5 M aq. alcoholic H_2SO_4 (15 ml) was refluxed for 6 hr and then poured into H_2O (15 ml) [16]. After conen under red. pres. the aq. residue was extd with CHCl₃. The combined CHCl₃ exts were dried over Na₂SO₄, evapd and chromatographed to give 23 mg 11- α -OH-16- α -Omethylneoquassin (2). ¹H and ¹³C NMR: (Tables 1 and 3).

Oxidation of compound 2. Compound 2 (20 mg) in Me_2CO was treated at 0° with Jones reagent. Usual work-up of the reaction mixt. and chromatographic

				-					
Н	1*+‡	1a†§	2†	6*†	7	7a	8	9	10
1		·····						4.55 s	4.48 s
3	5.25 d (5)	5.20 d (6)	5.25 d (5)	5.30 d (5)	5.35 d (5)	5.30 d (5)	5.30 d (3)	4.65 d (3)	4.68 d (3)
7	3.62 m	3.60 m	3.70 m	3.62 m	3.50 m	3.55 m	3.60 m	4.29 m	4.30 m
9	3.05 d (13)	3.00 d (12)	3.00 d (13)	3.21 s	3.20 s	3.20 s	3.15 s	3.38 s	3.25 s
11	5.05 d (13)	5.09 d (12)	4.27 d (13)			500 m			
16	4.80 d (3)	4.80 d (3)	4.82 d (3)	4.80 d (3)	4.90 d (3)	4.85 m			
OMe-2	3.60 s	3.60 s	3.60 s	3.61 s	3.63 s	3.65 s	3.62 s	3.55 s	3.58 s
OMe-12	3.65 s	3.68 s	3.65 s	3.67 s	3.70 s	3.70 s	3.69 s	3.60 s	3.65 s
OMe-16	3.40 s	3.42 s	3.45 s	3.39 s					
Me-4	1.15 d (3)	1.15 d (2)	1.14 d (3)	1.13 d (3)	1.10 d (6)	1.12 d (6)	1.12 d (5)	1.00 d (3)	1.08 d (3)
Me-8	1.28 s	1.28 s	1.26 s	1.30 s	1.20 s	1.19 s	1.25 s	1.23 s	1.22 s
Me-10	1.58 s	1.60 s	1.58 s	1.57 s	1.56 s	1.56 s	1.57 s	1.10 s	1.12 s
Me-13	1.82 s	1.80 s	1.80 s	1.85 s	1.85 s	1.85 s	1.85 s	1.88 s	1.86 s

Table 1. ¹H NMR spectral data for compounds 1–10 (200 MHz, 400 MHz^{*}, CDCl₃, pyridine- d_5^{\dagger})

 \pm Besides 4.95 (1 ×, d, J = 42 Hz) H-anom and 3.55–4.00 (6H, m) H-Glc.

§ Besides 4.98 (1H, d, J = 12 Hz) H-anom and 4.20–4.55 (6H, m)H-Glc.

* 13,18 - Dehydro

purification yielded 14 mg of a pure product which proved to be $16-\alpha$ -O-methylneoquassin (6) identical by TLC, ¹H and ¹³C NMR (Tables 1 and 3), with the natural product 6 isolated from the CHCl₃, extract.

Methylation of compound 3. The aq. layer obtained from acid hydrolysis of 1 was chromatographed through a short column of anion-exchange resin (Amberlite RA 400, OH-form), treated with EtOH and evapd in vacuo to give an amorphous residue which was dried in the presence of P_2O_5 for 7 hr under red. pres. at 45°. The powdered product 3 (5 mg) obtained was identified as D-glucose by TLC comparison with an authentic sample [17]. Compound 3 was then suspended in dry MeOH (5 ml), previously satd, with gaseous HCl, and kept for 16 hr at 70° in a sealed tube. After evapn of solvent, the solid residue was suspended in H₂O, extd with EtOAc and the combined organic exts, dried over Na_2SO_4 , were evapd at room temp. under N_2 . The residue (3 mg) was identical by TLC (silica gel, CHCl₃-MeOH, 9:1 and EtOAc-C₆H₆, 1:1) and by ¹H NMR, to a synthetic mixture of methyl α,β -D-glucoside prepared from an authentic sample of Dglucose. It was also identical to the natural compound 4 (5 mg) isolated from the MeOH-sol. extract.

Acetylation of compound 4. Three samples (10 mg each) of 4, the natural one, the one obtained from the methylation of 3 and a synthetic mixt. of methyl- α,β -D-glucoside were acetylated in Ac₂O- pyridine to yield the same tetraacetyl- α,β -D-glucoside (5).

Methylation of compound 7. To a soln. of 50 mg of neoquassin (7) in 8 ml of DMFA were added 70 mg MeI and 70 mg Ag₂O and the reaction mixt. kept in a sealed tube for 17 hr at 85°. The reaction mixt. was then poured into H₂O (30 ml) and the soln extracted with CHCl₃. The combined CHCl₃ exts were repeatedly washed with H₂O, dried over Na₂SO₄ and evapd *in vacuo*. CC purification afforded 28 mg of 16-O-methylneoquassin (7a), which was identical, by TLC with natural product 6 and with 6 obtained from 1 as shown in Scheme 1. ¹H NMR: Table 1. ¹³C NMR: Table 3.

H	=	12	13	14	14 a	15	16	17	17a	18	18a	19	8	21
				4.05 s	5.03 s	4.03 s		4.03 s	5.0 \$			-	Ì	
· m	5.40 d (3)	5.21 d (3)	5.28 d (3)	4.81 d (4)	4.80 d (4)	4.80 d (4)	5.25 d (4)	4.80 d (4)	5.40 d (4)	5.30 d (5)	5.35 d (5)	5.38 d (3)	5.35 d (3)	5.38 d (2)
2	4.30 m	4.32 m	4.22 m	4.30 m	4.30 m	4.30 m	4.00 m	4.35 m	4.30 m	3.90 m	3.80 m	3.98 m	3.85 m	4.35 d (3)
														d (2)
6	2.48 d (12)	2.81 d (12)	2.79 d (12)	2.62 d (12)	2.80 d (13)	2.65 d (13)	2.85 d (13)	2.70 d (12)	2.75 d (13)	3.0.5	3.06 s	2.97 d (12)	2.98 d (13)	2.66 d (12)
11	4.37 d (12)	5.31 d (12)	5.70 (12)	3.36 d (12)	4.35 d (13)	3.50 d (13)	3.52 d (13)	3.40 d (12)	4.45 d (13)		1	3.55 d (12)	3.60 d (13)	4.35 d (12)
				d (4)	d (3)	d (2)	d (2)	d (4)	d (13)			d (4)	d (2)	
12				3.57 d (4)	4.58 d (3)	3.66 d (2)	3.68 d (2)	3.55 d (4)	4.52 d (3)	3.52 d (2)	4.50 d (2)	3.41 d (4)	3.48 d (2)	l
				d (2)	d (3)	d (2)	d (2)	d (2)	d (2)					
16				ł		ł	-	4.96 d (3)	5.61 d (3)		1		-	4.75 d (10)
														d(7) d (3)
												∫ 5.02 s	∫ 5.00 s	ł
18	1.83 d (6)	1.85 d (6)	1.62 s	1.85 d (6)	1.79 d (6)	1.87 d (6)	1.80 d (6)	1.80 d (6)	1.78 d (6)	1.85 d (6)	1.82 d (5)	(4.97 s	(4.89 s	1.85 d (5)
OMe-2	3.58 s	3.58 s	3.57 s	3.35 s	3.40 s	3.38 s	3.40 s	3.44 s	3.49 s	3.60 s	3.60 s	3.66 \$	3.65 s	3.58 s
Me-4	1.04 d (6)	1.08 d (6)	1.14 d (6)	1.05 d (6)	1.08 d (4)	1.05 d (6)	1.06 d (5)	1.09 d (6)	1.10 d (6)	1.12 d (5)	1.09 d (6)	1.21 d (5)	1.20 d (6)	1.09 d (4)
Me-8	1.32 s	1.37 \$	1.36 s*	1.19 5	1.16 s	1.28 s	1.25 s	1.28 s	1.20 s b	1.32 s	1.30 s	1.30 s	1.32 s	1.38 s
Mc-10	1.52 \$	1.53 s	1.38 s*	1.09 s	1.02 s	1.14 s	1.58 s	1.06 s	1.15 s ^b	1.66 s	1.58 s	1.54 s	1.58 5	1.50 \$
						∫ 1.36 s	f 1.35 s						∫ 1.39 s	I
O ₂ C Me ₂		1	-	ł	I	ر 1.59 م) 1.60 s	-	-	-	l	-	(1.62 s	ļ
			{ 2.12 s		f 2.08 s				{ 2.06 s					
OAc	restore	2.10 <i>s</i>	(2.09 s	-	{ 2105 2115	ł		I	(2.12 <i>s</i>		2.13 s	1	l	1

Table 2. ¹H NMR spectral data for compounds 11-21 (200 MHz, CDCl₃)

** Values may be interchanged.

Quassinoids from Quassia amara

1011

Table 3. ¹³C NMR spectral data for compounds 1, 2, 6, 8, 10-12, 14, 17-19 and 21 (50 MHz) (CDCl₃, *pyridine-d₅)

С	1*	2	6	8	10	11	12	14	17	18	19	21
1	193.1	193.6	197.8	197.5	70.3°	197.7	196.8	72.0 ^e	209.4	208.8	208.2	211.3 ^f
2	148.0	147.5	140.1	147.9	150.9	146.8	146.5	153.9	148.2	148.5	147.5 ^d	148.7
3	116.5	116.4	116.1	116.3	104.4	114.0	113.9	101.6	116.5	116.2	115.8	117.7
4	31.3	30.9	30.8	30.7	30.9	31.6	32.0	31.8	30.9	32.3	30.8	41.3
5	45.8	44,4	42.9	43.0	44.9	43.1	45.0	42.9	44.2	45.0	43.2	42.7
6	25.1ª	25.3ª	25.4ª	25.4°	25.2ª	24.9 ^d	25.2ª	25.8ª	26.0ª	25.5ª	25.9ª	26.1ª
7	68.1	68.2	68.4	81.5	82.8°	80.2°	80.8°	81.4°	78.9°	82.0°	82.6	75.2°
8	38.2	36.0	36.5	36.7	37.1	35.9	36.8	37.0	36.6	35.9	35.8	37.3
9	46.3 ^b	44.1 ^b	48.2 ^b	45.6 ^b	46.0 ^b	42.9 ^b	42.5 ^b	42.8 ^b	43.6 ^b	43.1 ^b	42.5 ^b	42.9 ^b
10	40.1	42.3	45.4	45.5	41.9	43.3	44.0	45.2	40 9	44.4	46.0	48.7
11	90.8	79.8	192.1	190.7	192.0	76.0°	80.1°	75.8°	75.9°	206.1	75.6	77.3°
12	139.9	140.0	139.8	138.0	139.8	204.8	205.6	76.4°	76.6°	77.5°	77.1	204.4 ^f
13	148.2	148.5	147.4	147.6	147.5	39.6	42.9	43.0	43.2	46.0	146.1 ^d	50.6
14	49.6 ⁶	48.6 ^b	45.8 ^b	45.9 ^ъ	48.8 ^b	44.9 ^b	45.1 ^b	44.3 ^b	44.8 ^b	44.6 ^b	44.5 ^b	44.4 ^b
15	29.6ª	30.2ª	28.9ª	31.9°	30.7ª	30.9ª	31.6ª	31.1ª	30.8ª	31.5°	31.5ª	31.2ª
16	95.7	96.1	96.6	168.7	168.9	169.4	169.0	169.5	98.2	168.8	169.3	97.0
18	13.1 ^d	13.0 ^d	14.8 ^d	14.9 ^d	15.1 ^d	12.3 ^d	10.5 ^d	10.7 ^d	10.9 ^d	11.3 ^d	114.3	11.0 ^d
19	12.7ª	12.9 ^d	12.4 ^d	12.3 ^d	12.7ª	12.2 ^d	12.7 ^d	12.6 ^d	12.5 ^d	12,3 ^d	12.5	12.3 ^d
30	19.4°	18.9°	19.2°	19.0°	19.2°	18.9°	19.3°	18.8°	19.2°	19.0°	18.8°	19.2°
Me-4	19.3°	20.1°	21.5°	21.8°	19.0°	20.8°	21.1°	19.8°	20.4°	20.8°	20.9°	21.2°
	(54.8	55.1	54.3	54.6	54.4	54.5	54.6	54.3	55.0	54.8	55.2	54.9
OMe	{ 59.0	59.0	58.6	58.9	59.1							
	55.8	55.9	53.8	AL	58.6	And a state					•	
							(168.8					
OAc							21.3°					
1′	106.4											
2′	78.6											
3'	77.4											
4'	77.0											
5'	75.4											
6'	59.9											

Signals with the same letters in the same vertical column may be reversed.

 $16-\alpha$ -O-Methylneoquassin (6). Isolated from CHCl₃ extract. Yield 75 mg, powder from MeOH, mp 173–176°. IR $v_{max}^{CHCl_3}$ cm⁻¹: 2960, 1680, 1640. ¹H NMR: Table 1. ¹³C NMR: Table 3. This compound was spectroscopically identical with the one obtained by acid hydrolysis of 1 followed by CrO₃ oxidation and it had the same TLC R_f value as the product of methylation (7b) of natural neoquassin (7).

1-Dihydro- α -methoxyquassin (10). Isolated from CHCl₃ extract. Yield 12 mg, powder from MeOH, mp 168–172°. ¹H NMR: Table 1. ¹³C NMR: Table 3.

Reduction of quassin 8. A soln of 100 mg of 8 in 4 ml of aq. NaOH (10%) was treated with 300 mg of NaBH₄ stirring at 80° for 30 min. The reaction mixt. was then cooled and quenched with excess Me₂CO. After 30 min the mixt. was acidified with aq. H₂SO₄ (1%) to pH 2 and extracted with CHCl₃ [15]. After usual work-up, CC purification yielded 45 mg of 1-dihydro- α -hydroxy-quassin (9), mp 197-200°. ¹H NMR: Table 1. ¹³C NMR: Table 3, in agreement with those reported in the lit. [11].

Methylation of compound 9. Compound 9 (10 mg) was methylated with Me_2SO_4 in DMSO at 50° for 15 hr

according to the usual procedure. The product of the reaction, after CC purification, (25 mg) was identical by TLC, mp, ¹H and ¹³CNMR (Tables 1 and 3) to the natural compound 10.

11-Dihydro-12-norneoquassin 21. Isolated from CHCl₃ extract. Yield 19 mg, identical to an authentic sample [8]. ¹H NMR: Table 2. ¹³C NMR: Table 3.

Parain (11). Isolated from $CHCl_3$ extract. Yield 250 mg, identical to an authentic sample [8]. ¹H NMR: Table 2. ¹³C NMR: Table 3.

11-Acetylparain (12). Isolated from CHCl₃ extract. Yield 14 mg, ¹H NMR: Table 2. ¹³C NMR: Table 3.

Acetylation of parain (11). Parain (60 mg) was acetylated in Ac_2O -pyridine at room temp. After usual work-up, CC sepn afforded 40 mg of 11-acetylparain (12), identical to the isolated natural compound, and 5 mg of the diacetylated product 13. ¹H NMR: Table 2. ¹³C NMR: Table 3.

Reduction of parain (11). Parain (11) (120 mg) was reduced with NaBH₄-NaOH as described in ref. [15]. CC purification of the product of reaction yielded 45 mg of 1-hydroxy-12- α -hydroxyparain (14), mp 219-223°. Powder from MeOH. ¹H NMR: Table 2. ¹³C NMR: Table 3. Compound 14 was also acetylated yielding the triacetyl derivative 14a.

Acetonylation and oxidation of compound 14. Compound 14 (25 mg) was treated with dry $CuSO_4$ in Me_2CO at reflux temp. for 24 hr. After the usual work-up 20 mg of 12,13-acetonylderivative (15) was obtained. ¹H NMR: Table 2. Compound 15 was then oxidized by Jones reagent at 0° yielding product 16.

Reduction of parain (11) by NaBH₄. Parain (11) (40 mg) was dissolved in 40 ml of EtOH and stirred with 120 mg of NaBH₄ at 60° for 1 hr. The reaction furnished 22 mg of 12-dihydro- α -hydroxyparain (17) identified by ¹H (Table 2) and ¹³C NMR (Table 3) and by the formation of the triacetyl derivative (17a).

Acetonylation and oxidation of compound (17).Compound 17 (20 mg) was acetonylated as described above. The product of reaction was directly oxidized with Ag_2O in EtOH-H₂O [8] yielding, after CC purification, product 16 (10 mg) which was identical by TLC and ¹H NMR to the compound obtained by CrO₃ oxidation of 15 (Scheme 3 and Table 2).

Isoparain (18). Isolated from CHCl₃ extract. Yield 28 mg, needles from MeOH, mp 259–261°. ¹H NMR (Table 1) identical to those reported in lit. [8, 18]. ¹³C NMR: Table 3.

Isomerization of parain (11). Parain (11) (20 mg) was poured into a mixt. of 10 ml of EtOH and 10 ml of 0.1 M aq. NaOH and the soln refluxed for 48 hr. After acidification with 0.1 M HCl and extraction with $CHCl_3$, usual work-up gave a residue which was chromatographed yielding 25 mg of isoparain (18) identical by TLC, ¹H and ¹³C NMR (Tables 2 and 3) to the natural compound.

Acetylation of isoparain (18). A sample of 18 from alkaline isomerization of 11 (20 mg) and a sample of natural 18 (20 mg) were acetylated with Ac_2O -pyridine furnishing the same monoacetyl derivative (18a). ¹H NMR: Table 2.

 $12-\alpha$ -Hydroxy-13,18-dehydroparain (19). Isolated from CHCl₃ extract. Yield 11 mg, powder from MeOH, mp 238–241°. IR ν_{max}^{CHCl₃} cm⁻¹: 3500, 2980, 2950, 1730, 1690, 1630, 1450, 1400, 1130. ¹H HMR: Table 2. ¹³C NMR: Table 3. Compound 19 was then acetonylated according to the procedure above described to give the acetonyl derivative **20**.

Acknowledgements—This work was supported by grants from Ministero dell'Università e della Ricerca Scientifica e Tecnologica (M.U.R.S.T.) and the Consiglio Nazionale delle Ricerche - Rome (C.N.R.). The authors are grateful to Mr Costantino Moriconi for his helpful technical assistance.

REFERENCES

- 1. Polonsky, J. (1985) Fortschr. Chem. Org. Naturst. 47, 221.
- Sakaki, T., Yoshimura, S., Tsuyuki, T. and Takahashi, T., (1986) Tetrahedron. Letters 27, 593.
- Sakaki, T., Yoshimura, S., Tsuyuki, T. and Ishibashi, M., (1985) Bull. Chem. Soc. Jpn 58, 2673.
- Sakaki, T., Yoshimura, S., Tsuyuki, T. and Ishibashi, M., (1985) Bull. Chem. Soc. Jpn 58, 2680.
- Sakaki, T., Yoshimura, S., Tsuyuki, T. and Ishibashi, M., (1984) Chem. Pharm. Bull. 32, 4702.
- 6. Morita, H., Kishi, E., Takeya, K., Itokawa, H., and Tanaka, O., (1990) Chem. Letters 5, 345.
- Tada, H., Yasuda, F., Otani, K., Doteuchi, M., Ishihara, Y. and Shiro, M. (1991) Eur. J. Med. Chem. 26, 345.
- 8. Grandolini, G., Casinovi, C. G., Barbetti, P. and Fardella, G. (1987) *Phytochemistry* 26, 3085.
- 9. Barbetti, P., Grandolini, G., Fardella, G. and Chiappini, I. (1987) Planta Med. 3, 289.
- Barbetti, P., Grandolini, G., Fardella, G. and Mastalia, A. (1990) Planta Med. 56, 216.
- Yoshimura, S., Ishibashi, M., Tsuyuki, T. and Takahashi, T. (1984) Bull. Chem. Soc. Jpn 57, 2496.
- 12. Hirota, H., Yokoyama, A., Tsuyuki, T. and Takahashi, T. (1988) Chem. Letters 651.
- 13. Koike, K., and Ohmoto, T. (1990) *Phytochemistry* **29**, 2617.
- Koike, K., Ishii, K., Mitsunaga, K. and Ohmoto, T. (1991) Chem. Pharm. Bull. 39, 939.
- Ceccherelli, P., Curini, M., Diamantini, M., Marcotullio, M. C. and Grandolini, G. (1987) *Tetrahedron* 43, 243.
- Yoshimura, S., Ishibashi, M., Tsuyuki, T., Takahashi, T. and Matshushita, K. (1984) Bull. Chem. Soc. Jpn 57, 2496.
- 17. Barbetti, P. and Corsano Leopizzi, S. (1975) Ann. Chim. 65, 403.
- Vitagliano, J. C. and Comin, J. (1972) Phytochemistry 11, 807.