The Journal of Physical Chemistry

© Copyright, 1984, by the American Chemical Society

VOLUME 88, NUMBER 9 **APRIL 26, 1984**

LETTERS

Interpretation of β -Hydrogen Hyperfine Splittings in the Electron Spin Resonance of the 3-Methyl-3-phenylbut-1-yl Radical¹

K. U. Ingold,^{*2a} D. C. Nonhebel,^{2b} and T. A. Wildman^{2a}

Division of Chemistry, National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada, and Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, Scotland (Received: September 7, 1983; In Final Form: February 13, 1984)

At low temperatures the $PhCMe_2CH_2CH_2$ radical preferentially adopts a conformation in which the radical center and the phenyl substituent are gauche to each other when viewed along the C_{β} - C_{γ} bond. The β -hydrogens are magnetically nonequivalent and the magnitudes of their hyperfine splitting represent an average over rotation about the C_{α} - C_{β} bond. On the basis of the equation $a^{H_{\beta}} = 54 \langle \cos^2 \theta \rangle$ G, we have derived a simple, two-component rotational potential which supports the suggestion that there is a weak, attractive interaction between the singly occupied $C_{\alpha} 2p_z$ orbital and the π -cloud of the phenyl substituent. The conformations of some related radicals are also discussed.

A recent report by Brumby³ on preferred conformations and line broadening effects in the ESR spectra of primary alkyl and aralkyl radicals, $R(CH_2)_n CH_2$ (R = Me, Ph; $n \ge 1$), prompts us to present some novel results on a related series of aralkyl radicals, PhCMe₂(CH₂)_nĊH₂ ($n \ge 1$).

At low temperatures PhCMe₂CH₂CH₂ exists in both a gauche conformation,⁴ 1, and a trans conformation,⁴ 2, of which the

Issued as NRCC No. 23271.
 (2) (a) NRCC. (b) Strathclyde.
 (3) Brumby, S. J. Phys. Chem. 1983, 87, 1917-24.
 (4) Phenyl group vs. the CH₂ group.

preponderant conformer 1 has magnetically nonequivalent β hydrogens (see Figure 1 and Table I).⁵ Both of these observations indicate that rotation about the C_{β} - C_{γ} bond is slow on the ESR time scale at -117 °C. The barrier to this rotation is relatively high since there is still some broadening of the central lines of the triplets corresponding to the β -H splitting even at 25 °C, although the spectrum tends toward the triplet of triplets expected for free rotation (see Figure 1). For comparison, this type of behavior has been observed for the n-butyl radical at much lower temperature.^{3,6-9} The preference for conformation 1 may be rationalized on steric or electronic grounds. Steric effects may favor this conformation because the effective bulk of a phenyl group is probably less than that of a methyl group. We believe

- (7) Kochi, J. K.; Krusic, P. J. J. Am. Chem. Soc. 1969, 91, 3940-2.
 (8) Krusic, P. J.; Kochi, J. K. J. Am. Chem. Soc. 1971, 93, 846-60.

⁽⁵⁾ We are aware of only one other nonconjugated radical which has been reported to exist in two conformations, namely, CF₃(Me₃Si)CCH(SiMe₃)CF₃, see: Griller, D; Cooper, J. W.; Ingold, K. U. J. Am. Chem. Soc. **1975**, 97, 4269-75.

⁽⁶⁾ Kochi, J. K. Adv. Free Radical Chem. 1974, 5, 189-317.

⁽⁹⁾ Edge, D. J.; Kochi, J. K. J. Am. Chem. Soc. 1972, 94, 7695-702.

Figure 1. ESR spectra for PhCMe₂CH₂CH₂ at -117, -30, and 25 °C in cyclopropane. Peaks due to 2 are marked by ×.

that there is also a weak attractive interaction between the singly occupied $C_{\alpha} 2p_z$ orbital and the π -cloud of the proximate phenyl substituent. Such interactions have been suggested previously for

PhCH₂CH₂CH₂ĊH₂ and PhC(CH₂ĊH₂)CH₂CH₂ĊH₂ (with support from INDO MO calculations),³ and for PhCH₂GèMe₂.¹⁰ The magnitudes of the β -H hyperfine splittings (hfs) in conformation 1 support our opinion.

In RCH₂CH₂ radicals, the β -H hfs, $a^{H_{\beta}}$, is related to the dihedral angle, θ , between the C_{β}-H bond and the axis of the singly occupied C_{α} 2p_z orbital by the equation

$$a^{\mathbf{H}_{\beta}} = A + B \cos^2 \theta \tag{1}$$

where A and B are constants ($A \approx 3 \pm 2$ G, $B \approx 49 \pm 5$ G).¹¹

(10) Mochida, K.; Kira, M.; Sakurai, H. Chem. Lett. 1981, 645-8.

The value of $a^{H_{\theta}}$ which is observed experimentally is, however, an average over quantum states and corresponds to an average value of $\cos^2 \theta$, denoted $\langle \cos^2 \theta \rangle$.¹² In the light of such averaging, it is not possible to use eq 1 to compute a physically meaningful value for θ from the measured hfs.¹³ Moreover, $\langle \cos^2 \theta \rangle$ cannot be equated with $\cos^2 \langle \theta \rangle$, where $\langle \theta \rangle$ is an average dihedral angle, were it hoped that $\langle \theta \rangle$ might describe a physical structure.¹³ Instead the derived quantity $\langle \cos^2 \theta \rangle$ should be compared with values calculated by averaging $\cos^2 \theta$ over the internal rotation about the $C_{\alpha}-C_{\beta}$ bond.

For primary alkyl radicals it is usually assumed^{6,11} that A is 0 and B is equal to twice the β -H hfs in CH₃CH₂,¹⁴ namely, 2 \times 26.87 \approx 54 G. We write

$$a^{H_a} = B \langle \cos^2 \theta_a \rangle \tag{2}$$

$$a^{\mathrm{H}_{\mathrm{b}}} = B \langle \cos^2 \left(\theta_{\mathrm{a}} - 120^{\circ} \right) \rangle \tag{3}$$

or

$$a^{H_b} = B\left(\frac{3}{4} - \frac{1}{2}\langle\cos^2\theta_a\rangle - \frac{3^{1/2}}{4}\langle\sin 2\theta_a\rangle\right) \qquad (4)$$

by making use of trigonometric identities. For PhCMe₂CH₂CH₂ in conformation 1 at -117 °C, $a^{H_a} = 19.15$ G, $a^{H_b} = 34.25$ G, ¹⁵ and eq 2 and 4 yield $\langle \cos^2 \theta_a \rangle = 0.35_5$ and $\langle \sin 2\theta_a \rangle = -0.14_3$.

We must now introduce a trial potential and perform averaging over $\cos^2 \theta$ and $\sin 2\theta$. In the simplest case, the preference for staggering the C_{α}-H and C_{β}-H bonds is described by a sixfold potential

$$V(\phi) = V_6 \sin^2 3\phi \tag{5}$$

where ϕ is the dihedral angle between the C_{β}-CMe₂Ph bond and the axis of the singly occupied C_{α} 2p_z orbital (see 3 which has

been drawn for $\phi = 60^{\circ}$). (Of course, because there are two $C_{\beta}H$ bonds and one C_{β} -CMe₂Ph bond, this component is not strictly sixfold.) Equation 5 cannot account for the observed hfs by itself because it leads to equivalent β -H's. In conformation 1 the phenyl group is not symmetrically disposed relative to the β -H's; it lies gauche to H_a and trans to H_b. Therefore, we introduce an additional twofold component in $V(\phi)$:

$$V(\phi) = V_2 \sin^2(\phi - \Psi) + V_6 \sin^2 3\phi$$
(6)

where Ψ is an adjustable phase angle which determines the position of the minimum for this component. Rather than average $\cos^2 \theta$ and $\sin 2\theta$ over each rotational state and then calculate an ensemble average of these values with Boltzmann weighting, we perform the classical average, which is sufficient for our purposes, namely

$$\begin{cases} \cos^2 \theta \rangle = \\ \int_0^{360} \cos^2 \left(\phi - 120^{\circ} \right) \exp\left[-\beta V(\phi)\right] d\phi / \int_0^{360} \exp\left[-\beta V(\phi)\right] d\phi$$
(7)

(11) (a) Ayscough, P. B. "Electron Spin Resonance in Chemistry"; Methuen: London, 1967. (b) Fischer, H. In "Free Radicals"; Kochi, J. K. Ed.; Wiley: New York, 1973; Vol II, Chapter 19.

(12) Stone, E. W.; Maki, A. H. J. Chem. Phys. 1962, 37, 1326-33.

(13) This restriction has frequently been overlooked and specific structures have been assigned to radicals containing one or two β -atoms on the basis of their $a^{H\beta}$ values.

(14) In CH₃ĊH₂ rotation about the C_{α} - C_{β} bond is essentially free so $\langle \cos^2 \theta \rangle = \frac{1}{2}$.

(15) A naive interpretation of these two β -H hfs via eq 1 leads to the impossible result that $\theta_a = 53^{\circ}$ and $\theta_b = 37^{\circ}$ with a consequent dihedral angle between the two β -H's of 90° rather than the necessary 120°.

R	temp, °C	<i>a</i> ^H _α (2 H)	$a^{\mathrm{H}_{\beta}}(2 \mathrm{H})^{b}$	$a^{H_{\gamma}}$	ref
PhCMe ₂	-117	21.90 ^c	19.15 (1 H), ^c 34.25 (1 H) ^c		this work
	-117	21.75 ^d	22.75 ^d		this work
	25	21.88	24.80		this work
$PhCMe_2CH_2$	-113	21.92	28.60	0.70	this work
$PhCMe_2CH_2CH_2$	-113	21.85	29.50	Q.8 1	this work
$PhC(CH_2CH_2)$	-140	22.2	23.6 (1 H), 34.0 (1 H)		17
<u> </u>	-40	22.2	27.0		17
$PhC(CH_2CH_2)CH_2$	-120	22.1	28.3 (1 H), 30.5 (1 H)	1.0	17
	-40	22.4	28.5		17
PhCHMe	-117	22.1	27.95 ^e	0.9	this work
	-20	21.9	24.4 (1 H), 29.1 (1 H)	1.0	this work
PhCH ₂	-93	22.11	28.65	0.71	this work
PhCH ₂ CH ₂ ^f	-110	22.18	29.04	0.69	this work

TABLE I: ESR Hyperfine Splittings Constants for Some RCH₂CH₂ Radicals^a

^{*a*}Hfs are given in Gauss. Radicals prepared in this work were generated by UV photolysis of mixtures of the appropriate bromide, triethylsilane, and di-*tert*-butyl peroxide in cyclopropane as solvent (see ref 23). ^{*b*}Unless otherwise noted. ^{*c*}Conformation 1. ^{*d*}Conformation 2. ^{*e*}Average value for the two β -H's. Spectrum resembles that of PhCMe₂CH₂CH₂ at -30° (see Figure 1) and so barrier to rotation about C_{β}-C_{γ} bond is lower in PhCHMeCH₂CH₂ than in PhCMe₂CH₂CH₂, as expected. At higher temperatures the spectrum becomes complicated by the diastereotopic character of the β -H's. ^{*f*}Included for comparison. For other data on this radical, see ref 3, 7, and 9.

Figure 2. ESR spectra at -113 °C in cyclopropane of PhCMe₂CH₂CH₂CH₂CH₂(A) and of PhCMe₂CH₂CH₂CH₂CH₂CH₂(B).

where $\theta = \phi - 120^{\circ}$ and $\beta = (k_{\rm B}T)^{-1}$. (sin 2θ) is obtained in the same way. The calculated and measured values of these averages match for $V_2 = 1.9 \pm 0.1$ kJ mol⁻¹, $V_6 = 4.5 \pm 2.0$ kJ mol⁻¹, and $\Psi = 40 \pm 5^{\circ}$. The absolute minima of the rotational potential then occur at $\phi = 60^{\circ}$ and 240°. There are relative minima at $\phi = 0^{\circ}$ (180°) and 120° (300°) that are 0.6 and 1.6 kJ mol⁻¹, respectively, above the absolute minima. There is some correlation between V_2 , V_6 , and Ψ , but the available data do not allow a more precise analysis. The values of V_2 and V_6 appear to be reasonable in magnitude. A minimum energy conformation in which the axis

of the singly occupied $C_{\alpha} 2p_z$ orbital nearly eclipses the $C_{\beta}H_b$ bond has been proposed for *n*-butyl radicals trapped in an argon matrix at 4 K ($\phi = 66.8^{\circ}$),¹⁶ but INDO MO calculations place the minimum energy conformation at 18°.³ We propose that the twofold component in eq 6 corresponds to an attractive interaction between the unpaired electron and the π -cloud of the phenyl substituent. A similar, albeit weaker, interaction could conceivably

⁽¹⁶⁾ Adrian, F. J.; Bowers, V. A.; Cochran, E. L. J. Chem. Phys. 1975, 63, 919-23.

occur with the methyl group orbitals in *n*-butyl.

Two structurally related radicals, PhC(CH₂CH₂)CH₂ĊH₂ and

PhC(CH₂CH₂)CH₂CH₂CH₂, have been reported by Doyle et al.¹⁷ to have inequivalent β -H hfs at low temperatures and so must adopt gauche conformations¹⁸ analogous to **1**. Clearly, a similar attractive interaction should be present in both these radicals and, indeed, such an interaction has been suggested for the latter compound on the basis of INDO MO calculations.³ Surprisingly, our analogue of Doyle et al.'s¹⁷ ϵ -phenyl-substituted radical, i.e., PhCMe₂CH₂CH₂CH₂, has equivalent β -H's at all temperatures, as does the next member in our series, PhCMe₂CH₂CH₂CH₂CH₂CH₂ (see Table I). Line broadening in PhCMe₂CH₂CH₂CH₂CH₂ is slight¹⁹ even at -113 °C (see Figure 2). We suggest that the differences

between PhCMe₂CH₂CH₂CH₂ and PhC(CH₂CH₂)CH₂CH₂CH₂CH₂ relate to the bulk of the group attached to C_{γ} , the PhCMe₂ group being the larger. This view is supported by the observation that the barrier to rotation about the C_{β} - C_{γ} bond is lower, as judged from the temperatures at which line broadening occurs, in Ph

A Theory of Chemical Kinetics

Akio Morita

Department of Chemistry, College of Arts and Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo 153, Japan (Received: December 7, 1983)

The chemical kinetics of the simple first-order reversible reaction $A \rightleftharpoons B$ is considered by assuming many intermediate states between the reactant A and the product B. An Arrhenius type of relation for rate constants is obtained with a full account of the dynamics by comparing the phenomenological rate equations to a set of equations arising from the Smoluchowski equation. Also, it is shown that the Smoluchowski equation with an arbitrary force field can be put into a set of rate equations for the successive first-order reversible reaction.

The kinetics of the first-order successive reversible reactions

$$A_1 \xrightarrow[k_1]{k_1} A_2 \xrightarrow[k_2]{k_2} \dots \xrightarrow[k_{n-1}]{k_{n-1}} A_n \qquad (I)$$

where A_i (i = 1, 2, 3, ..., n) is a chemical species, and k_i and k'_i are the rate constants for the forward and backward reactions, respectively, is written by the phenomenological rate equations

$$d(a_1(t))/dt = -k_1a_1(t) + k'_1a_2(t)$$

$$d(a_j(t))/dt = -(k'_{j-1} + k_j)a_j(t) + k_{j-1}a_{j-1}(t) + k'_ja_{j+1}(t)$$
(1)

$$d(a_n(t))/dt = -k'_{n-1}a_n(t) + k_{n-1}a_{n-1}(t)$$

where $a_j(t)$ is the concentration of A_j at the time t. The above chemical reaction describes how the starting chemical species A_1 = A may become the final product A_n = B through the intermediate species A_j (j = 2, 3, 4, ..., n - 1). Hence this reaction scheme can be used for considering the diffusion phenomena. In fact, it is well-known that, for an irreversible reaction where k_i = k and $k'_i = 0$, the requirement of the initial condition of $a_i(0)$ $\dot{C}(CH_2\dot{C}H_2)CH_2\dot{C}H_2$ than in PhCMe₂CH₂CH₂. That is, for steric reasons the PhCMe₂CH₂CH₂CH₂ radical prefers a trans conformation²⁰ analogous to **2**,²¹ whereas PhC(CH₂CH₂)-CH₂CH₂CH₂ (and PhCH₂CH₂CH₂CH₂) adopt gauche conformations²² analogous to **1**.³

In summary, from an analysis of the measured β -H hfs in conformation 1 of PhCMe₂CH₂CH₂, we have obtained a simple potential for internal rotation about the C_{α}-C_{β} bond. This potential is comprised of a sixfold component, which corresponds to the interaction between C_{α}-H and C_{β}-H bonds, and a twofold component, which represents the interaction between the singly occupied C_{α} 2p₂ orbital and the π -cloud of the phenyl substituent. Similar interactions probably occur in the analogous conformations of other ω -substituted primary alkyl radicals if C_{α} and the π -cloud are proximate.

Acknowledgment. D.C.N. thanks SERC and the Carnegie Trust of the Universities of Scotland for financial support. We thank Dr. W. Siebrand for some enlightening discussions and also a firm but fair referee who prevented publication of less-sophisticated versions of this manuscript.

 $= a^{(0)} \delta_{1,i}$, where $\delta_{i,j}$ is the Kroneker δ , leads to $a_i(t)/a^{(0)}$ as given by the Poisson distribution which is often used in the statistical treatment. In considering the diffusion phenomena, we often use the Smoluchowski equation

$$\frac{\partial w}{\partial t} = D \frac{\partial}{\partial x} \left[\frac{\partial w}{\partial x} - f(x) w \right]$$
(2)

where w(x,t) is a distribution function, D is the diffusion constant, x is the position of a Brownian particle, and $f(x) = F(x)/k_{\rm B}T$ where F(x) is the mechanical force relating to the potential energy function V(x) by the equation

$$F(x) = -d(V(x))/dx$$
(3)

 $k_{\rm B}$ is the Boltzmann constant and T is the absolute temperature. The first term on the right of eq 2 arises from the random motion of the particle due to collisions by the surrounding molecules and the second from a force field f(x). On putting $(\partial w/\partial t) = 0$ in eq 2, we find the Maxwell-Boltzmann distribution function

$$w^{(eq)} = N \exp\left[-\frac{V(x)}{k_{\rm B}T}\right] \tag{4}$$

⁽¹⁷⁾ Doyle, M. P.; Raynolds, P. W.; Barents, R. A.; Bade, T. R.; Danen, W. C.; West, C. T. J. Am. Chem. Soc. 1973, 95, 5988-6000.

⁽¹⁸⁾ Ph group or Ph $C(CH_2CH_2)$ group vs. the $\dot{C}H_2$ group.

⁽²⁰⁾ $PhCMe_2CH_2$ group vs. the CH_2 group.

⁽²¹⁾ $Me_3CCH_2CH_2CH_2$ also adopts a trans conformation.³

 ⁽²²⁾ PhC(CH₂CH₂)CH₂ group or PhCH₂CH₂ group vs. the CH₂ group.
 (23) Hudson, A.; Jackson, R. A. J. Chem. Soc., Chem., Commun. 1969, 1323-4.