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STRUCTURES OF THORNASTEROLS A AND B 
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Summary: (20S)-thornasterol A, (20S,24R)-thornasterol B, (20S,24S)-thornasterol B, and (2OS)- 
24-northornasterol A were stereoselectively prepared from (+)-asterone and were practically 
identical with the natural specimens. Consequently, the complete structures of versicosides B 
and C and acanthaglycoside F could be determined. 

We have 

whole bodies 

planci L. 2) . 

thornasterol 

reported the isolation and structure of steroidal oligoglycoside sulfates from 

of starfishes, Asterias amurensis [cf.] versicolor Sladen 1) and Acanthaster 

Versicosides B (1) and C (2) lb) and acanthaglycoside F (3) 2c) contained 

B3) 9 36,6a,20E-trihydroxy-24S_methyl-5a-cholest-9(ll)-en-23-one, as the steroidal 

component. However, they showed different negative Cotton maximums ( [6]284=-6028 for A, 

[61 287=-6884 for 2, but [6],,,- --685 for 2 ) in the CD spectrum lb,2c) and also different 

chemical shifts corresponding to C-24 and C-28 of their aglycones in the 13 C-NMR spectrum. 

These results were attributed to the presence of (20S,24R)-thornasterol B and (2OS,24S)- 

thornasterol B. We have now determined the configurations of the C-24 position in thornasterol 

B's and of C-20 in thornasterols A, B and 24-northornasterol A. The former was determined by 

preparing two thornasterol B's and the latter by leading 20E-hydroxy-23-oxocholest-5-en-36-yl 

p-bromobenzoate (g), which was prepared by the Mukaiyama's cross-aldol reaction, to 2OB- 

hydroxycholesterol (15) 4) . 

Diacetyl (20S,24R)-thornasterols B (4) and (20S,24S)-thornasterol B (2) were synthesized 

as follows. (E)-4-Methyl-2- pentenol (I) was epoxidized by the Katsuki-Sharpless reaction 5) , 

11+4 l-+3 5 
R -KXy1- Qui 

R1 R2 R3 R4 

Fuc Qui versicoside B (1) Gal Gal H Me 

versicoside C (2) Gal H H Me 

acanthaglycoside F (2) Gal Fuc Ma H 

OH R3 R4 
.*. 

0 LgF+ 
AcO 

H 1 
OAc 

diacetyl (20S,24R)-thornasterol B 

(4): R3= H, R4=Me 

diacetyl (20S,24S)-thornasterol B 

(5): R3=Me, R4= H 

diacetyl (SOS)-thornasterol A 

(2): R3= H, R4= H 

3369 



3370 

using (+)-diethyl tartrate as a chiral element to an epoxy alcohol (8) ( >90% e.e., 
1 
H-NMR of 

its MTPA ester ) in a 64% yield. Treatment of 8 with trimethylaluminum in hexane at O'C 7) 

afforded a 1,2-diol which was converted to an alcohol (2) 6) in a 48% yield from 8 by selective 

tosylation and subsequent LAH reduction. Swern oxidation of 2 to the corresponding ketone 

followed by enol etherification with trimethylchlorosilane gave (3R)-3,4-dimethyl-2-trimethyl- 

silyloxy-1-pentene (lo) 6) in a 56% yield from 2. s was treated with a mixture of diacetyl 

asterone1a'2a) (11) and titanium tetrachloride in CH2C12 at RT for 1 hr8) to give diacetyl 

(20S,24R)-thornasterol B (+)6) in a 95% yield. The physical and spectroscopic properties of 4 

were identical to those of the natural specimen 1) which was derived from versicoside B (I). 

Diacetyl (20S,24S)-thornasterol B (2) was prepared in a similar manner, except for the use of 

(-)-diisopropyl tartrate in the asymmetric epoxidation. The Mukaiyema's cross-aldol reaction 

of (3S)-3,4-dimethyl-2-trimethylsilyloxy-1-pentene (10') 6) with 11 gave 2 6) in excellent - 

yield. The 
13 C-NMR chemical shifts of C-12 to C-28 as well as the 'H-NMR shifts of 5 were 

superimposable on those of the aglycone moiety of acanthaglycoside F (2) 2c) . The CD spectra of 

2 and 2 showed the same Cotton effect as shown in Figures 1 and 2. 

Diacetyl (20S):thornasterol A (2) 
la,2b,2c,6) 

and diacetyl (20S)-24-northornasterol A 

(12)6'9) could be prepared from the corresponding trimethylsilyl enol ether and 11 by means of - - 

the Mukaiyama's cross-aldol reaction 8) . 2 was identical to the natural specimen in every 

respect 
la,2b) . The l3 C-NMR chemical shifts of C-12 to C-27 of 12 and its characteristic 'H-NMR 

peaks were in good agreement with those of the aglycone moiety of ophidianosides B and C 9) . 

In order to determine the C-20 configuration of thornasterols, 205-hydroxy-23-oxocholest- 

5-en-3B-yl pbromobenzoate (13) 6) and 205-hydroxy-23-oxo-24-norcholest-5-en-3B-yl acetate 

(l# were prepared from pregnenolone derivatives, in a similar manner. The conformation of 

the side chain, C-20 to C-27, of 13 and 14 were identical to that of 2 and 12, respectively, 

by comparison of the 
13 i- 
C-NMR and H-NMR chemical shifts of all the aldol products. In each 

case, the aldol reaction gave the single C-20 epimer having the 20-hydroxy-23-carbonyl moiety. 

These results could be well explained in terms of two factors, that the addition of 

organometallic reagents to the C-20 ketone of the steroid depends on the position and 

configuration of substituents near C-20 and the bulkiness of the reagent 10) . In the case of 

the reaction of pregnenolone acetate with a Grignard reagent, a 20s hydroxy compound is 

predominantly formed 4) . On the base of the above results and physical constants of 

thornasterols and their analogs, 13 and 14, the C-20 configuration was identical and 

apparently 20s. Conclusive evidence was obtained by chemical means. Sodium borohydride 

reduction of 13 led to a mixture of C-23 alcohols which were converted to acetates in a 71% - 
yield from 13. The acetates were treated with lithium in EtNH2 under reflux for 2 hr to give - 

206-hydroxycholesterol (15) 6, in a 36% yield and 20B-hydroxycholest-5-ene (s) 6, in a 12% 

yield. 15 was acetylated to 17 6) . The physical constants of 15 and 17 were in excellent 

agreement with the values in the literature 4) . Consequently, it was revealed that 

thornasterols had the same 20s configuration and the structures of versicosides B (1) end C 

(2) and acanthaglycoside F (3) were considered to have (20S.24R)-thornasterols B (4) and 

(20S,24S)-thornasterol B (5) as the aglycone component, respectively. 
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carbon 
C-NMR chemical shifts ( 6 values, in C,D5N 

number 1 4 3 -6 5 13 12 14 

1 35.8 35.3 36.0 35.4 35.2 37.2 35.5 37.2 
2 29.4 29.0 29.4 29.2 29.2 28.1 29.2 28.1 

77.7 73.1 77.7 73.2 73.3 75.2 73.2 74.1 
4 30.8 27.4 30.8 27.5 27.5 38.4 27.5 38.5 
5 49.3 46.9 49.3 47.0 47.0 140.0 47.0 140.0 
6 80.3 72.0 80.4 72.1 72.1 122.8 72.1 122.8 
7 41.6 36.4 41.6 38.6 38.6 32.1 38.6 32.1 
a 

350 
35.3 35.0 35.3 35.2 35.2 31.5 35.2 31.5 

9 145.5 144.4 145.4 144.6 144.6 50.2 144.6 50.2 
---tL 10 

+A 
38.8 38.4 38.3 38.6 38.6 36.9 38.6 36.8 

11 116.7 117.7 116.7 117.7 117.7 21.2 117.7 21.2 
12 42.5 42.3 42.5 42.5 42.4 40.4 42.4 40.4 
13 41.6 41.5 41.6 41.7 41.7 43.1 41.7 43.0 
14 54.1 53.6 54.1 53.9 53.9 57.1 53.9 57.1 
15 23.3 23.1 23.2 23.2 23.3 23.3 23.3 23.2 
16 25.1 24.9 25.2 25.0 25.0 24.2 25.0 24.2 
17 59.2 59.0 59.1 59.0 59.4 59.5 59.3 59.3 
18 13.5 13.5 13.6 13.6 13.6 13.8 13.6 13.8 
19 19.2 18.9 19.2 19.0 19.0 19.4 19.0 19.4 
20 73.8 73.7 73.8 73.7 73.7 74.0 73.8 74.1 
21 27.0 27.0 27.1 27.3 27.2 27.4 27.2 27.4 
22 53.7 53.8 53.8 53.7 55.0 55.1 52.2 52.3 
23 215.9 215.8 216.0 215.9 211.6 211.7 215.9 215.9 
24 53.7 53.8 54.1 54.2 54.0 54.1 
25 30.0 30.0 29.8 30.0 24.4 24.4 42.4 42.4 
26 21.3 21.3 21.4 21.4 22.6 22.7 17.8 17.8 
27 18.5 18.4 18.5 18.8 22.6 22.6 18.3 18.3 
28 11.9 11.9 12.5 12.6 
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