Crystal structure of doisynolic acid and the structure of other products formed during its synthesis

Dae Yoon Chi, Scott R. Wilson, and John A. Katzenellenbogen

Department of Chemistry, University of Illinois, Urbana, IL, USA

The crystal structure of the D-seco-estrogen doisynolic acid shows it to have the natural S configuration at the position derived from C-14 in estrone. Two major by-products during the synthesis of doisynolic acid from estrone are shown to be dimeric steroids. One is an aldol condensation product, and the other appears to arise from an alkaline cleavage of the aldol product. (Steroids **60**:261–264, 1995)

Keywords: doisynolic acid; estrogens; X-ray crystallography; stereochemistry

Introduction

Doisynolic acid (1), an estrogen D-ring seco steroid formed by alkaline fusion of estrone (2), and its various cogeners have been endocrine curiosities since their first preparation in the 1930s and 1940s (Figure 1).¹⁻³ Some isomers are exceedingly potent and long-acting stimulants of uterine growth when administered to rats orally (exceeding by a wide margin the potency of estradiol); however, the most potent isomers appear to have the unnatural R configuration at the carbon derived from C-14 in estrone,³ and as a whole the members of the doisynolic acid class have affinities for the estrogen receptor that are far below that of estradiol.⁴

The stereochemistry of the doisynolic acid isomers and various B-ring unsaturated analogs has been elucidated by chemical correlations studies.^{3,5} We present here the X-ray structure of (+)-trans-doisynolic acid derived from estrone, showing definitively that this less active isomer has the natural S configuration, which is consistent with the earlier assignments.^{3,5} Furthermore, we have characterized by ¹H and ¹³C NMR and mass spectroscopy the structure of two dimeric steroids that are prominent byproducts in the low-yield alkaline fusion by which doisynolic acid is prepared.

Experimental

General methods

Proton and ¹³C magnetic resonance spectra were obtained on a Varian Unity 400 spectrometer at 400 MHz and 101 MHz, respectively. ¹H NMR and ¹³C NMR chemical shifts are reported in ppm downfield from internal tetramethylsilane (δ scale). The data are reported in form (if applicable): chemical shift (multiplicity, coupling constant, number of protons, assignment). All J values are in Hertz (Hz). Purification was by flash chromatography.⁶

Alkaline Cleavage of Estrone

We followed the procedure of MacCorquodale² and Iviark. Estrone (1.0 g, 3.7 mmol) was heated with solid potassium hydroxide (20 g, 356 mmol) in a glass flask at 280-290°C for 1.25 h. After having been cooled to room temperature, the brown reaction mixture was dissolved in water, filtered, and the filtrate neutralized with dry ice, yielding a solid (950 mg) that was collected by filtration. TLC analysis (40% EtOAc/hexanes) showed three spots (staining by phosphomolybdic acid) at Rf 0.5 (estrone), 0.4 (ultraviolet [UV] active), and 0.3 (very weakly UV active). The spot at R_f 0.4 corresponds to two products-doisynolic acid (1, very weakly UV active) and aldol addition dimer 3a (UV active); the spot at R_f 0.3 was identified as the novel dimeric condensation product 4. Doisynolic acid is reported to be UV active,⁷ but is only visible when applied in large quantities on a TLC plate. The spots at R_f 0.4 and 0.3 stained yellow with bromocresol purple, indicating that they are acids. The flash column chromatography provided crude doisynolic acid, which was purified by extraction into aqueous saturated NaHCO3 and after reiosolation, recrystallization from hexane/actone: m.p. 194-196°C (lit.² 195°C).

Address reprint requests to: John A. Katzenellenbogen, Department of Chemistry, University of Illinois, 461 Roger Adams Laboratory, Box 37, 600 S. Mathews Ave., Urbana, IL 61801, USA. Received July 3, 1994; accepted October 3, 1994

Figure 1 Structures of doisynolic acid (1) and estrone (2).

Spectroscopic data

1. ¹H NMR (300 MHz, CDCl₃ + acetone-d₆) δ 0.91 (t, 3, J = 7.5 Hz, CH₂CH-3), 1.06 (s, 3, CH₃), 1.17-1.38 (m, 6), 1.58-1.76 (m, 2), 1.92 (td, 1, J = 10.0, 3.6 Hz), 2.00-2.08 (m, 1), 2.18-2.35 (m, 2), 2.68-2.76 (m, 2, C6-H₂), 6.46 (d, 1, J = 2.6 Hz, C4-H), 6.53 (dd, 1, J = 8.4, 2.6 Hz, C2-H), 7.02 (d, 1, J = 8.41, C1-H); ¹³C NMR (75 MHz, CDCl₃ + acetone-d₆) δ 13.9 (CH₃), 23.1 (CH₂), 25.1 (CH₂), 26.2 (CH₂), 29.1 (CH₂), 36.1 (CH₂), 40.3 (CH), 42.2 (CH), 46.2 (C), 46.9 (CH), 111.9 (CH), 113.8 (CH), 125.3 (CH), 129.8 (C), 136.4 (C), 154.0 (C), 178.7 (CO); MS (EI, 70 eV) 288 (M⁺, 68), 243 (10), 213 (30), 160 (100), 145 (19), 133 (28).

3a. ¹H NMR (300 MHz, acetone-d₆) δ 0.85 (s, 3, CH₃), 0.95 (s, 3, CH₃), 1.30–2.48 (m, 22), 2.75–3.05 (m, 8), 6.50–6.52 (m, 2, 2C4-H), 6.53–6.60 (m, 2, 2C1-H), 7.10 (d, 2, J = 8.4 Hz, 2C2-H); MS (EI, 70 eV) 522 (M⁺, 74), 507 (100), 350 (12), 280 (4), 261 (6), 252 (28), 237 (11), 225 (5), 213 (63), 199 (13), 185 (13), 172 (24) 159 (72), 145 (24), 133 (54). Analysis calculated for C₃₆H₄₂O₃: 522.3134. Found: 522.3130.

3b. ¹H NMR (300 MHz, CDCl₃) δ 0.87 (s, 3, CH₃), 0.92 (s, 3, CH₃), 1.30–2.25 (m, 22), 2.80–3.02 (m, 8), 3.79 (s, 6, OCH₃), 6.63–6.67 (m, 2, 2C4-H), 6.70–6.75 (m, 2, 2C1-H), 7.20–7.24 (m, 2, 2C2-H); MS (EI, 70 eV) 550 (M⁺, 60), 535 (100), 375 (3), 364 (12), 349 (4), 324 (4), 275 (12), 266 (30), 251 (16), 227 (86). Analysis Calculated for C₃₈H₄₆O₃: 550.3447. Found: 550.3442.

4. ¹H NMR (300 MHz, acetone- d_6) δ 0.50 (s, 3, CH₃), 0.98–1.34 (m, 7), 1.07 (s, 3, CH₃), 1.38–1.50 (m, 1), 1.58–1.80 (m, 5), 1.80–2.02 (m, 4), 2.03–2.23 (m, 3), 2.36 (t, 1, J = 10.2 Hz), 2.55–2.75 (m, 4, 2C5-H), 5.10 (dd, 1, J = 15.2, 9.5 Hz, = CH), 5.31 (dd, 1, J = 15.2, 8.4 Hz, = CH), 6.38–6.41 (m, 2, 2C2-H), 6.41–6.55 (m, 2, 2C2-H), 6.95 (d, 1, J = 8.0 Hz, C1-H), 7.00

(d, 1, J = 8.0 Hz, C1-H); ¹³C NMR (75 MHz, acetone-d₆) δ 13.0 (CH₃), 15.6 (CH₃), 25.0, 26.3, 26.9, 28.5, 28.62 (2), 28.62, 30.4, 37.0, 37.8, 39.4, 39.7, 43.4, 44.73 (2), 48.1, 52.1, 55.1, 55.5, 113.28 (C2 or 4 CH), 113.43 (C2 or 4 CH), 115.59 (C2 or 4 CH), 115.65 (C2 or 4 CH), 126.75 (2, 2C1-CH), 131.26 (=CH), 131.41 (C), 131.97 (C), 135.0 (=CH), 138.15 (C), 138.35 (C), 155.58 (C), 155.74 (C), 178.9 (COOH); MS (EI, 70 eV) 540 (M⁺, 60), 525 (2), 494 (3), 454 (3), 439 (2), 312 (6), 267 (9), 257 (23), 254 (23), 228 (26), 213 (1000, 199 (12), 185 (21), 173 (21), 159 (56), 145 (23), 133 (64). Analysis Calculated for C₃₆H₄₄O₄: 540.3240. Found: 540.3226.

X-ray Crystallography

Crystal data for $C_{18}H_{24}O_3 \cdot \frac{1}{2}H_2O_1$. Transparent, colorless, and prismatic single crystal of 1 was monoclinic at -75° C, space group $P2_1$ (C_2^{-2} ; No. 4) with a = 11.194(2) Å, b = 7.298(2) Å, c = 20.042(7) Å, $\beta = 103.47(2)$, V = 1592(9) Å³ and $d_{calcd} =$ 1.241 g cm⁻³ for Z = 4. A total of 2758 intensities were measured (Mo K α 2 θ < 47°, 2564 unique, R_i = 0.013) on an Enraf-Nonius CAD4 automated κ -axis diffractometer using ω/θ scans with angles of $1.50[1.00 + 0.35\tan(\theta)]$. These data were corrected for Lorentz-polarization effects, anomalous dispersion, and absorption [$\mu_a(Mo K\alpha) = 0.79 \text{ cm}^{-1}$]. The structure was solved by direct methods (SHELXS-86),8 and refined by least-squares $(SHELX-76)^9$ to convergence [R(F) = 0.035 and $\omega R(F) = 0.036$ for 2133 observed reflections $(I > 2.58\sigma(I))$]. In the final cycles of least-squares refinement, positions and anisotropic thermal coefficients were refined for non-H atoms; positions for six O bound H atoms were refined; a common isotropic H atom thermal parameter was refined; and an empirical isotropic extinction parameter was varied. Successful convertence was indicated by the maximum shift/error for the last refinement cycle. The final map had no significant features and a final analysis of variance showed no systematic errors. The absolute configuration could not be crystallographically determined using Mo radiation; however, the geometry at atoms C-8 and C-9 was established by synthesis, so the relative geometry at C-14 was determined by this experiment.

Results and discussion

We performed the KOH fusion reaction of estrone according to a previously reported procedure.^{2,6,7} A crystal suitable for X-ray crystallography was grown from an acetone/ hexane solution of 1. The crystal structure of doisynolic acid (1, Figure 1) clearly shows that it retains the natural S configuration at the carbon derived from C-14 in estrone.

Figure 2 X-ray crystallographic structure of the doisynolic acid 1.

262 Steroids, 1995, vol. 60, March

Scheme 1 Proposed mechanism to form compound 4.

Figure 3 Structures 3 and 4.

As it is the less potent doisynolic acid isomer that is derived from estrone, this confirms that the more potent epimer has the unnatural R configuration at this center.^{3,5}

All literature preparations of doisynolic acid from estrone by alkaline fusion report low yields. Despite considerable effort, we have been unable to improve our yield of 20–30%. However, in the course of our investigations, we have isolated two dimeric condensation products 3a (<5%) and 4 (20–30%) that are formed during the reaction. Their structures have been established by ¹H and ¹³C NMR and MS. While compound 3 results simply from an aldol addi-

tion-dehydration sequence, the more unusual structure 4 could be formed by an alkaline induced ring scissionrearrangement sequence from the aldol product as shown in Scheme 1. The distinguishing features from the ¹H NMR spectrum of 4 are two olefinic proton resonances (δ 5.10, J = 15.2, 9.5 Hz and δ 5.31, \hat{J} = 15.2, 8.4 Hz) and two methyl singlets (δ 0.50, 1.07). In addition, ¹³C NMR shows two sets of steroid peaks, including two new olefinic carbons (& 131.3, 135.0; CH peaks by proton attached test experiment) and one carbonyl carbon (δ 178.9). EI mass spectrometry identified the molecular ion as m/z 540. The stereochemistry of olefin is trans, based on the 15.2 Hz coupling constant, and each olefinic carbon is attached to a CH group. The stereochemistry of C-17 could not be identified. The structure assigned to compound 4 is constant with all of these data (Figure 3; Scheme 1).

We also performed the KOH fusion reaction of estrone 3-methyl ether. Because of its poor solubility, starting material reacted inefficiently. The aldol addition-dehydration product **3b** was the only isolated compound (50%, based on consumed starting material). Compounds **3a** and **3b** are both UV active and have ¹H NMR spectra showing two C-18 methyl peaks. EI mass spectrometry of **3a** and **3b** showed molecular ions as 522 and 550, respectively.

In conclusion, we have obtained a crystal structure of doisynolic acid, derived from estrone, and shown that it has the natural 14S configuration. The structures of two persistent byproducts that of form during the strongly alkaline cleavage conditions have been elucidated.

Acknowledgments

We are grateful for support of this research through grants from the National Institutes of Health (PHS 5R37 DK15556) and the Eli Lilly Corporation, and for the help of Andrew Scribner.

Papers

References

- 1. MacCorquodale DW, Thayer SA, Doisy EA (1933). On the purification and constitution of theelol. J Biol Chem 99:327-334.
- 2. MacCorquodale DW, Levin L, Thayer SA, Doisy EA (1933). The oxidation of theelin and some theelol derivatives. J Biol Chem 99:753-761.
- 3. Miescher K (1948). On doisynolic acids, a new class of estrogens. Chem Rev 43:367-384.
- 4. Meyers C, Kolb VM, Gass GH, Rao BR, Roos CF, Dandliker WB (1988). Doisynolic-type acids-uterotropically potent estrogens which compete poorly with estradiol for cytosolic estradiol receptor. J Steroid Biochem 31:393-404.
- 5. Iriarte J, Crabbe P (1972). Stereochemistry of the D-seco-steroid doisynolic acid. J Chem Soc Chem Commun 1110.
- 6. Still WC, Kahn M, Mitra A (1978). A rapid chromatographic technique for preparative separations with moderate resolution. J Org Chem 43:2923-2925.
- 7. Kundu N, Osawa Y (1974). Synthesis of ³H- and ¹⁴C-labelled doisynolic and marrianolic acids, and stability of tritium label. J Lab Comp 10:31-37.
- 8. Sheldrick GM (1986). SHELXS-86. In: Sheldrick GM, Kruger C, Goddard R, (eds.), Crystallographic Computing 3. Oxford University Press, UK, pp. 175–189. Sheldrick GM (1976). SHELX-76, a program for crystal structure
- 9. determination. University Chemical Laboratory, Cambridge, UK.