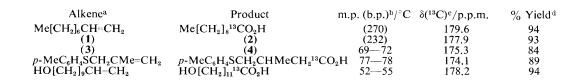
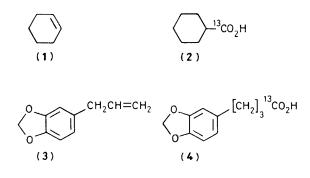
View Article Online / Journal Homepage / Table of Contents for this issue

Synthesis of Carbon-13 Labelled Carboxylic Acids via Organoborane Reactions

George W. Kabalka, Mark C. Delgado, Usha Sastry, and Kunda A. R. Sastry Chemistry Department, University of Tennessee, Knoxville, TN 37996–1600, U.S.A.


¹³C-Labelled carboxylic acids are readily synthesized *via* the reaction of organoboranes with ¹³C-enriched carbon monoxide; functionally substituted acids are efficiently prepared *via* a carbonylation–oxidation sequence.

Carbon-13 enriched carboxylic acids play an important role in biological and medical research.¹ Traditionally these reagents have been prepared *via* the treatment of organometallic reagents with carbon-13 labelled carbon monoxide or dioxide,²⁻⁴ hydrolysis of appropriately labelled nitriles,³ or oxidation of labelled methyl groups.⁵ These reactions are generally limited in scope owing to the high reactivity of the organometallic reagents and/or unavailability of appropriate starting materials.


Organoboranes have proven to be extremely versatile synthetic reagents.⁶ In recent years, we have utilized organoborane chemistry to incorporate isotopes of carbon,⁷ iodine,⁸ bromine,⁹ and nitrogen.¹⁰ We report that carbon-13 labelled, functionally substituted carboxylic acids can be conveniently prepared *via* a carbonylation–oxidation sequence (*e.g.* Scheme 1).^{11,12} A ¹³CO atmosphere is maintained (*via* a rubber bladder

 $HOCH_{2}[CH_{2}]_{8}CH=CH_{2} \xrightarrow{i, ii, iii, iv} HOCH_{2}[CH_{2}]_{10}^{13}CO_{2}H$

Scheme 1. *Reagents:* i, R_2BH (9-BBN); ii, ¹³CO (1 atm), KBH(OPr¹)₃; iii, H_2O_2 , NaOAc; iv, AgNO₃, NaOH.

^a The alkenes were converted into the corresponding alkyl-9-BBN derivatives *via* hydroboration with 9-BBN in THF. ^b All products exhibited physical and spectral characteristics identical with those of authentic samples. ^c Chemical shift of the carbonyl carbon atom; ¹³C n.m.r. spectra were run on a JEOL FX-90Q instrument. ^d Isolated yields.

gas reservoir) above a cooled (0 °C), well stirred equimolar mixture of the organoborane {0.5 M, alkylborabicyclo[3.3.1]nonane (alkyl-9-BBN) in tetrahydrofuran (THF, 10 ml) } and KBH(OPr¹)₃. After 15 min, NaOAc (1.0 M in H₂O, 12 ml) and H₂O₂ (30%) are added to oxidize the intermediate organoborane and form the ¹³C-labelled aldehyde. After another 15 min, diethanolamine¹³ is added to precipitate the borinic acid byproduct. The mixture is saturated with NaCl and the product extracted into ether. The ether is removed and the product is added to a suspension of freshly prepared Ag₂O [AgNO₃ (30 mmol, 1.0 M) is mixed with NaOH (60 mmol, 2.0 M)].¹² The mixture is heated to 50 °C for 30 min. The product is isolated by extraction into 2 M NaOH followed by acidification.

Our results are summarized in Table 1.

We thank the Department of Energy for support of this research.

Received, 19th August 1982; Com. 1004

References

- D. G. Ott, 'Synthesis with Stable isotopes of Carbon, Nitrogen and Oxygen,' John Wiley & Sons, New York, 1981, p. 16.
 T. Nagasaki, Y. Katsuyama, and H. Minato, J. Labelled
- 2 T. Nagasaki, Y. Katsuyama, and H. Minato, J. Labelled Comp. Radiopharm., 1976, 12, 409.
- 3 B. Stuetzel, W. Ritter, and K-F. Elgert, Angew. Makromol. Chem., 1976, 50, 21.
- 4 D. G. Ott and V. N. Kerr, J. Labelled Comp. Radiopharm., 1976, 12, 119.
- 5 G. A. Braden and U. Hollstein, J. Labelled Comp. Radiopharm., 1976, 12, 507.
- 6 H. C. Brown, 'Organic Synthesis via Boranes,' Wiley Interscience, New York, 1975.
- 7 G. W. Kabalka, E. E. Gooch, C. J. Collins, and V. F. Raaen, J. Chem. Soc., Chem. Commun., 1979, 607.
- 8 G. W. Kabalka and E. E. Gooch, J. Chem. Soc., Chem. Commun., 1981, 1011.
- 9 G. W. Kabalka, K. A. R. Sastry, and P. G. Pagni, J. Radioanal. Chem., 1982, 74, 315.
- 10 G. W. Kabalka, K. A. R. Sastry, G. W. McCollum, and C. A. Lane, J. Chem. Soc., Chem. Commun., 1982, 62.
- 11 H. C. Brown, J. L. Hubbard, and K. Smith, Synthesis, 1979, 701.
- 12 I. A. Pearl, Org. Synth., 1963, Coll. Vol. 4, 972.
- 13 S. O. Lawesson, Ark. Kemi, 1956, 10, 171.

Table 1