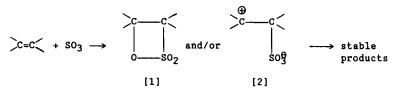
NMR EVIDENCE FOR B-SULTONES AS INITIAL PRODUCTS IN REACTIONS OF OLEFINS WITH SULPHUR TRIOXIDE

> David W Roberts*, Philip S Jackson, Colin D Saul and Colin J Clemett.


Unilever Research Port Sunlight Laboratory, Quarry Road East, Bebington, Wirral, Merseyside, L63 3JN, England.

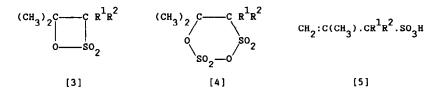
ABSTRACT

NMR evidence is provided to show that low temperature sulphonation of simple olefins of all structural types involves initial formation of β -sultones, thus supporting the previously suggested concerted thermal π^2_{e} + π^2_{e} cycloaddition mechanism.

INTRODUCTION

Sulphonation of olefins is currently a topic of major interest for detergent manufacture and it is, therefore, important to understand the reaction mechanisms as fully as possible. Reactions of olefins with sulphur trioxide (SO₃) give products which may be regarded as being derived from rearrangement of initially formed B-sultones [1] or B-zwitterions [2]⁽¹⁾, the α -carbon being defined as that bonded to sulphur:

On the basis of relative rate studies for sulphonation of a range of mono-, di- and trialkyl substituted ethenes, it has been suggested that the initial reaction in olefin sulphonation is formation of the B-sultone by a concerted thermal $\pi_2 + \pi_2$ pathway⁽²⁾. For linear monoalkyl and 1,2-dialkyl ethenes the existence of the corresponding B-sultones in sulphonation is well established⁽³⁻⁹⁾ and there is evidence to support our proposed pathway^(5,10). However, for other olefin types, particularly those for which the cationic centre in the B-zwitterion would be tertiary, there has so far been no evidence for B-sultones and it has been widely assumed that the sulphonation reaction involves direct formation of the B-zwitterion⁽⁸⁾.


In view of the wider applications towards cycloaddition theory, we considered it a matter of some urgency to validate the thermal concerted $\pi 2_{g} + \pi 2_{g}$ mechanism by testing the prediction that β -sultones should be formed from olefins of all structural types. 3072a

Here we present NMR evidence indicating that B-sultones are formed initially in all cases, even those where the B-zwitterion would appear to be particularly favoured.

In these studies olefin sulphonation reactions were carried out by adding, <u>via</u> a syringe, SO₃ dissolved in the reaction solvent (usually CDCl₃ or CD₂Cl₂) to a cold solution of the olefin in the same solvent in an NMR tube. ¹H or ¹³C NMR spectra, as appropriate, were recorded at pre-determined temperatures on a Bruker 360 MHz spectrometer. Chemical shifts were assigned by comparison with published ¹H^(3,4) and ¹³C^(6,7) spectra of β -sultones and pyrosultones derived from mono-alkyl and 1,2-dialkyl-ethenes.

Sulphonation of tetramethylethene

The NMR spectra of the reaction mixture at -63 °C produced by a 1.8:1 mole ratio of SO₃: olefin show only the ß-sultone [3A] and ß-pyrosultone [4A] in approximately equal quantities and residual olefin.

For [3], [4] and [5]: A, $R^1=R^2=CH_3$; B, $R^1=CH_3$, $R^2=H$; C, $R^1=R^2=H$

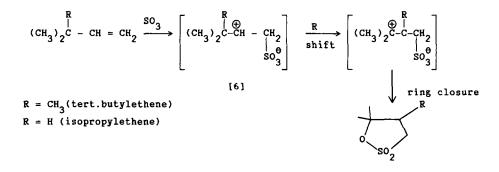
The sample was held at 20°C for 5 minutes and then reanalysed at -63°C. Both ¹H and ¹³C NMR spectra showed the disappearance of the B-sultone with the appearance of the alkene sulphonic acid [5A] but no significant change in the B-pyrosultone [4A] level. On storing at room temperature overnight, the reaction mixture gave a highly complex spectrum from which the B-pyrosultone [4A] signals were no longer present, the major product being the alkene sulphonic acid [5A].

<u>Sulphonation of trimethylethene:</u> The NMR spectra of the reaction mixture produced when SO_3 was added to trimethylethene (0.9:1 mole ratio of SO_3 to olefin) at -63°C showed the initial products to be the β -sultone [3B] and the β -pyrosultone [4B] in equal quantities with 48% of the original olefin remaining.

3384

After storage overnight at -23°C the B-sultone [3B] had isomerised to form the alkenesulponic acid [5B] but the B-pyrosultone was still present and its level remained stable over a further 6 hours at room temperature.

 $\underbrace{\text{NMR}:}_{\text{B-sultone:}} \stackrel{1}{\text{H}(\text{CD}_2\text{Cl}_2) \ \delta \ 4.55(q, \ \alpha-\text{H})} \stackrel{13}{\text{C}(\text{CD}_2\text{Cl}_2) \ \delta \ 76.5(s, \ \beta-\text{C}), } \\ \begin{array}{l} 73.0(d, \ \alpha-\text{C}). & & & & & & \\ 8-pyrosultone: \stackrel{1}{\text{H}(\text{CD}_2\text{Cl}_2) \ \delta \ 1.65(d, \ \alpha-\text{CH}_3), \ 1.7(s, \ \beta-\text{CH}_3), } \\ 1.8(s, \ \beta-\text{CH}_3), \ 3.80(q, \ \alpha-\text{H}). \stackrel{13}{\text{C}(\text{CD}_2\text{Cl}_2) \ \delta \ 94.0(s, \ \beta-\text{C}), \ 60.5(d, \ \alpha-\text{C}). } \\ \begin{array}{l} \text{Alkenesulphonic acid:} \quad \stackrel{1}{\text{H}(\text{CD}_2\text{Cl}_2) \ \delta \ 1.55(d, \ \alpha-\text{CH}_3), \ 1.87(s, \ \beta-\text{CH}_3), \ 3.91(q, \ \alpha-\text{H}), \\ 5.2(d, \ \beta-\text{CH}_2). \quad \stackrel{13}{\text{C}(\text{CD}_2\text{Cl}_2) \ \delta \ 62.5(d, \ \alpha-\text{c}), \ 119.0(t, \ \beta-\text{CH}_2), \ 136.6(s, \ \beta-\text{C}) \\ \end{array}$


Sulphonation of Isobutene:

In the 13 C NMR spectrum of isobutene, the two methyl groups are equivalent. However after addition of SO₃, in the spectrum of the reaction mixture at -63°C which showed the tertiary ß-sultone [3C] to be the major product, the two methyls of the ß-sultone are found at different chemical shifts and hence are non-equivalent. This can only be the case if the ß-sultone ring is non-planar and this is further evidence to support that of Nagayama et al.⁽⁵⁾ for the non-planarity of ß-sultone rings. Also in the low temperature spectrum, there is evidence for the ß-pyrosultone [4C]. On warming at room temperature for 30 minutes, the ß-sultone no longer remains and appears to have isomerised to the corresponding alkene sulphonic acid [5C]. The ß-pyrosultone however appears to be stable under such conditions.

<u>NMR</u>: β -sultone: ${}^{13}C(CD_2Cl_2) \delta 26.8(q, \beta-CH_3), 28.2(q, \beta-CH_3), 68.0(t, \alpha-C),$ 72.8(s, β -C). β -pyrosultone: ${}^{13}C(CD_2Cl_2) \delta 21.5(q, \beta-CH_3), 25.9(q, \beta-CH_3),$ 49.8(t, α -C), 89.5(s, β -C). Alkene sulphonic acid: ${}^{13}C(CD_2Cl_2) \delta 28.4(q, \beta-CH_3),$ 58.2(t, α -C), 121.0(t, β -CH₂), 131.5(s, β -C).

Sulphonation of Tertiarybutylethene and Isopropylethene:

The major products formed in the sulphonation of tert.butylethene $^{(11,12)}$ and isopropylethene $^{(12)}$ have been reported as being the γ -sultones [7]

The formation of [7] has been rationalised in terms of a methide $(R=CH_3)$ or hydride (R=H) shift on the β -zwitterions [6], followed by ring closure.

The proton NMR spectra of the reaction mixtures obtained by addition of SO_3 to the olefins at low temperature showed the corresponding B-sultones to be the major products.

For the tert.butylethene case (temperature -50°), the γ -sultone [7] was also present at a low level and a considerable amount of olefin remained unreacted. In the case of isopropylethene (temperature -63°), the β - and γ -sultones were present in approximately equimolar amounts and very little olefin remained. On warming to 20°C, the reaction mixtures gave spectra in which the β -sultones and the unreacted olefins were no longer present and the γ -sultones [7] were the major products.

<u>NMR</u>: tertiary butylethene, ß-sultone: 1 H(CD₂Cl₂,-50°C) & 0.9 (s, tert.butyl), & 4.25 (m,la-H & B-H), 4.42 (m,a-H) isopropylethene, ß-sultone 1 H(CD₂Cl₂,-63°C) & 0.87 & 0.98 (two d, two CH₃s) 2.05 (m,-C<u>H</u>Me₂), 4.30 & 4.63 (two m, two a-H & one ß-H)

CONCLUSION

Our findings provide the first direct evidence for the existence of tertiary-B-sultones and demonstrate that the initial reaction of SO₃ with olefins of all structural types produces B-sultones. This evidence strongly supports the thermal $\pi^2_{g} + \pi^2_{g}$ concerted cycloaddition mechanism previously suggested⁽²⁾.

REFERENCES

- E.E. Gilbert, Sulphonation and Related Reactions, Interscience, New York, 1965 (pp42-54).
- 2. D.W. Roberts, D.L. Williams and D. Bethell, J.Chem.Soc. Perkin.Trans II, 389 (1985)
- 3. A. Mori, M. Nagayama, M. Aoki and K. Yaguchi, Kogyo Kagaku Zasshi, <u>74</u>, 706 (1971).
- 4. A. Mori, M. Nagayama, K. Yaguchi and M. Aoki, Kogyo Kagaku Zasshi, <u>74</u>, 710 (1971).
- M. Nagayama, O. Okumura, S. Noda, H. Mandai and A. Mori, Bull.Chem.Soc. Japan, <u>47</u>, 2158 (1974).
- 6. W.A. Thaler and C. du Breuil, J.Polym.Sci., 22, 3905 (1984).
- 7. V.M. Castro, PhD Thesis No. 105, Institut Polytechnique de Toulouse, France (1986).
- 8. J.L. Boyer, B. Gilot and J-P Canselier, Phosphorus and Sulphur, 20, 259 (1984).
- 9. F.G. Bordwell and M.L. Peterson, J.Am.Chem.Soc., 76, 3957 (1954).
- 10. B.H. Bakker and H.Cerfontain, Tet.Lett. 28, 1699 (1987).
- 11. F.G. Bordwell, R.D. Chapman and C.E. Osborne, J.Am.Chem.Soc., <u>81</u>, 2002 (1959).
- 12. M.D. Robbins and C.D. Broaddus, J.Org.Chem., <u>39</u>, 2459 (1974).

(Received in UK 4 March 1987)