STRUCTURES OF EFFUSANINS, ANTIBACTERIAL DITERPENOIDS FROM RABDOSIA EFFUSA

Tetsuro FUJITA, Yoshio TAKEDA, Tetsuro SHINGU*, and Akira UENO** Faculty of Pharmaceutical Sciences, The University of Tokushima, Tokushima 770 *Faculty of Pharmaceutical Sciences, Kobe-Gakuin University, Tarumi-ku, Kobe 673 **Shizuoka College of Pharmacy, Shizuoka 221

Five new diterpenoids, effusanin A, B, C, D and E with antibacterial activity were isolated from the stem and leaves of *Rabdosia effusa* and their structures were deduced from chemical and spectral findings.

During investigations on biologically active substances in members of the Labiatae, we examined the constituents of stem and leaves of *Rabdosia effusa* (Maxim.) Hara¹ and isolated five new antibacterial² diterpenoids, effusanin A (1), B (2), C (3), D (4) and E (5) together with shikokianin (6)³, longikaurin E (7)⁴ and longikaurin F (8).⁴ Here we report elucidation of the structures of the new diterpenoids.

Effusanin A (1), $C_{20}H_{28}O_5$, mp 266-268 °C, $[\alpha]_D^{20}$ -79.7° (c=0.35, C_5H_5N) has a five membered ketone conjugated with an α -methylene group, judging from the following spectral data: λ_{max} (MeOH) 240 nm (ϵ 9712); ν_{max}^{5} 1702 and 1640 cm⁻¹; ¹H nmr⁶ δ 5.23 and 5.92 [each 1H, each br. s]; ¹³C nmr⁶ δ 115.8 (t), 154.5 (s)[exo-methylene] and 211.0 [ketone]. The ¹H nmr shows the presence of two tert. methyl groups (δ 1.12 and 1.17), an oxygenated methyl group [δ 4.29 and 4.70 (each 1H, each ABdd, 10 and 1 Hz)] and two protons attached to carbons having a hydroxyl group [δ 3.62 (1H, dd, 8 and 8 Hz), 4.19 (1H, dd, 11 and 7 Hz, changed to doublet, 7 Hz, after D₂O treatment)]. The ¹³C nmr also showed a signal due to an acetalic carbon (δ 95.9), besides signals assigned to an oxygenated methyl group (δ 63.8) and two secondary carbinyl carbons (δ 73.5 and 75.0). These data suggest that effusanin A (1) has the basic skeleton, *ent*-7 α -hydroxy-7 β ,20-epoxykaur-16-en-15-one (10).

In fact, the dihydro-compound (11) showed a negative Cotton effect $[\lambda_{max} \text{ (MeOH) nm }(\phi): 317 (-4667), 285 (+2258)]$ in the ord. The locations of the two secondary hydroxyl groups were determined as follows: In an internuclear double resonance (INDOR) experiment, a signal due to NOE⁷ was observed on a tert. methyl group at δ 1.12 when the double doublet at δ 4.19 was monitored. On the other hand, an NOE (10%) was observed for the double doublet at δ 4.19 on irradiation at δ 1.12. Therefore, the hydroxyl group should be located at position C-6 β . Acetylation (Ac₂O-C₅H₅N) of effusanin A (1) gave the monoacetate (2)[¹H nmr (CDCl₃) δ 4.58 (1H, dd, 10 and 6 Hz, 1 β -H)]. Oxidation of (1) with NaIO₄ gave isodocarpin (14)⁸, mp 290-291 °C, [α]²⁰_D -141.7° (c=0.22, C₅H₅N) [ν_{max} (KBr) 1750, 1700, 1650 cm⁻¹]. Accordingly, effusanin A has the structure (1).

Effusanin B (2)⁹, $C_{22}H_{30}O_6$, mp 258-260 °C, $[\alpha]_D^{20}$ -44.1° (c=0.28, CHCl₃) showed λ_{max} (MeOH) 240 nm (ϵ 9473) in the uv and v_{max} 1720, 1645, 1250 cm⁻¹ in the ir. This compound was identified as the monoacetate (2) of effusanin A (1).

Effusanin C (3), $C_{22}H_{30}O_7$, mp 243-245 °C, $[\alpha]_D^{21}$ -54.0° (c=0.46, C_5H_5N) gave the following uv and ir data: λ_{max} (MeOH) 240 nm (ε 9608); v_{max} 1740, 1700, 1640, 1235 cm⁻¹. The ¹H and ¹³C nmr are very similar to those of effusanin A (1) except that there is only one tert. methyl group and there are signals of a -CH₂OAc group: ¹H nmr [δ 1.94 (3H, s, OCOCH₃), 4.84 (1H, ABd, 11 Hz)]; ¹³C nmr [δ 170.1 (OCOCH₃), 66.5 or 64.4 (-CH₂OAc)]. These data suggest that effusanin C has a structure, in which one of the tert. methyl groups at C-4 in (1) is oxidised to an acetoxymethyl group. Acetylation (Ac₂O-C₅H₅N) of (3) gave the monoacetate (4), which was identical with effusanin D (4), $C_{24}H_{32}O_8$, mp 188-190 °C, $[\alpha]_D^{21}$ -28.2° (c=0.41, CHCl₃). The dihydro-compound (12) of effusanin D (4) showed a negative Cotton effect $[\lambda_{max}$ (MeOH) nm (ϕ): 318 (-4802), 285 (+2115)] in the ord. Oxidation of (3) with NaIO₄ gave a lactone (15), mp 270-272 °C. The acetoxymethyl group was deduced to be located at C-4 α from the fact that, in the ¹H nmr (C₅D₅N-CDCl₃) of (15), a signal due to NOE for the tert. methyl group was observed when a signal at δ 2.20 (1H, s, 5-H) was monitored. Accordingly, the structures of effusanin C and D should be represented as (3) and (4), respectively.

Effusanin E (5), $C_{20}H_{28}O_6$, mp 250-252 °C, $[\alpha]_D^{21}$ -81.3° (c=0.28, C_5H_5N) showed the following spectral data: λ_{max} (MeOH) 238.5 nm (ϵ 8335); ν_{max} 3600-3050, 1702, 1642 cm⁻¹. Besides the signals of two tert. methyl groups (δ 1.24 and 1.34), the ¹H nmr showed signals due to three protons on carbons bearing a hydroxyl group [δ 3.84 (1H, dd, 10 and 6 Hz), 4.28 (1H, dd, 11 and 7 Hz, changed to a doublet, 7 Hz, after D₂O treatment), 4.50 (1H, m, changed to a double doublet, 5 and 5 Hz, after D₂O treatment)] and signals assigned to a -CH₂O- group [δ 4.32 (1H, ABd, 11 Hz), 5.13 (1H, ABdd, 11 and 1 Hz)]. The ¹³C nmr showed the presence of an acetalic carbon (δ 96.3), an oxygenated methyl carbon (δ 65.7) and three secondary carbinyl carbons (δ 75.3, 73.5 and 67.0). These data suggest that effusanin E has the same structure as effusanin A (1) but with an additional secondary hydroxyl group. In fact, the dihydro-compound (13) showed a negative Cotton effect $[\lambda_{max} (MeOH) \text{ nm } (\phi): 317 (-4396), 284 (+1617)]$ in the ord. The additional hydroxyl group was concluded to be located at C-ll α , because the proton signals assigned to 20-H₁ and 14 α -H were shifted to δ 5.13 and 3.64 (1H, d, 12 Hz), respectively, like those of longikaurin D (9)⁴. Oxidation of (5) with NaIO₄ gave nodosin (16)¹⁰, mp 303-305 °C, $[\alpha]_D^{21}$ -141.2° (c=0.24, C₅H₅N); ν_{max} (KBr) 1750, 1702, 1642 cm⁻¹. Accordingly, effusanin E has the structure (5).

REFERENCES AND FOOTNOTES

- 1. H. Hara, Japan J. Bot., <u>47</u>, 193 (1972).
- 2. The minimal inhibitory concentrations (m.i.c.) of effusanin A (1), B (2), C (3), D (4) and E (5) against *Bacillus subtilis* ATCC 6633 are 62.5, 31.2, 62.5, 31.2 and 62.5 μg ml⁻¹, respectively. All the diterpenoids tested show m.i.c. of > 1000 μg ml⁻¹ against *Escherichia coli* NIHJ. The detailed study will be published elsewhere.
- 3. T. Kubota and I. Kubo, Bull. Chem. Soc. Japan, <u>42</u>, 1778 (1969).
- 4. T. Fujita, Y. Takeda, and T. Shingu, Heterocycles, in press.
- 5. Unless otherwise noted, all ir spectral data were obtained for Nujol mull.
- 6. Unless otherwise noted, ${}^{1}H$ and ${}^{13}C$ nmr spectra were recorded in $C_{5}D_{5}N$ solution, using tetramethylsilane as internal standard.
- T. Kikuchi, T. Yokoi, M. Niwa, and T. Shingu, Chem. Pharm. Bull. (Tokyo), <u>28</u>, 2014 (1980) and references cited therein.
- 8. E. Fujita, T. Fujita, and M. Shibuya, Chem. Pharm. Bull. (Tokyo), 16, 1573 (1968).
- 9. This compound has recently been isolated independently from *Rabdosia shikokiana* (Makino) Hara var. *shikokiana*: M. Ochi, M. Okamura, H. Ozuki, I. Miura, I. Kubo, and T. Kubota, Abstract Papers of 24th Symposium on the Chemistry of Terpenes, Essential Oils and Aromatics, p. 229 (1980).
- 10. E. Fujita, T. Fujita, and M. Shibuya, Chem. Pharm. Bull. (Tokyo), 16, 509 (1968).

(Received October 21, 1980)