Efficient and Stereoselective Access to the Polyol Fragment C9–C16 of Ansamycin Antibiotics

Michel Obringer, Marie Barbarotto, Sabine Choppin, and Françoise Colobert*

Laboratoire de stéréochimie associé au CNRS, UMR 7509, Université de Strasbourg, ECPM, 25 rue Becquerel, 67087 Strasbourg Cedex 2, France

francoise.colobert@unistra.fr

Received June 2, 2009

ABSTRACT

Efficient synthesis of the fragment C9–C16 bearing the *anti,syn* stereotriad of ansamycin antibiotics is described. Key steps for controlling the configuration of the three stereogenic centers involve a stereoselective Reformatsky-type reaction followed by a diastereoselective reduction of a β -ketosulfoxide.

Isolation from microbial sources (*Streptomycines* generally) and structure elucidation of an important class of complex macrolactam antibiotics, the ansamycins (mycotrienins),¹ has been reported in the last two decades. These secondary metabolites are very attractive because of their powerful biological activity, for example, antibacterial, antifungal, or antitumor properties. The ansamycin class of natural products includes mycotrienins (or ansatrienins) I (**1a**) and II (**2a**),² trienomycin A (**3a**),³ cytotrienin A (**2b**),⁴ and thiazinotrieno-

Wrona, I. E.; Agouridas, J.; Panek, J.S. C. R. *Chimie* **2008**, *11*, 1483.
 Sugita, M.; Hiramoto, S.; Ando, C.; Sasaki, T.; Furihata, K.; Seto,

H.; Otake, N. J. Antibiot. 1985, 38, 799, and references cited therein. (3) (a) Nomoto, H.; Katsumata, S.; Takahashi, K.; Funayama, S.; Komiyama K.; Umazawa, J.; Omura, S. J. Antibiot. 1980, 42, 470, (b)

Komiyama, K.; Umezawa, I.; Omura, S. J. Antibiot. 1989, 42, 479. (b)
Blagg, B. S.J.; Peng, W. Org. Synth. 2006, 8, 965.
(4) (a) Zhang, H. P.; Kakeya, H.; Osada, H. Tetrahedron Lett. 1997,

(4) (a) Zhang, H. F., Kakeya, H., Osada, H. *Terranearon Lett.* **1997**, 38, 1789. (b) Hayashi, Y.; Shoji, M.; Ishikawa, H.; Yamaguchi, J.; Tamura, T.; Imai, H.; Nishigaya, Y.; Takabe, K.; Kakeya, H.; Osada, H. *Ang. Chem., Int. Ed.* **2008**, *47*, 6657.

(5) Hosokawa, N.; Yamamoto, S.; Uehara, Y.; Hori, M.; Tsuchiya, K. S. *J. Antibiot.* **1999**, *52*, 485, and references cited herein.

10.1021/ol901144j CCC: \$40.75 © 2009 American Chemical Society Published on Web 07/22/2009

ORGANIC LETTERS

2009 Vol. 11, No. 16

3542-3545

Figure 1. Members of the triene-ansamycins group.

mycin $(4a)^5$ (Figure 1). More recently, quinotrierixin (1a with a SCH₃ on the quinone ring), demethyltrienomycins A and B, and demethyltrienomycinol (without a methyl at C14) were isolated from the culture broth of *Streptomyces* species

PAE37 and were found to have cytocidal activity against HeLa cells.⁶ All these compounds are characterized by a 21membered cyclic lactam including a (E,E,E)-triene and four chiral centers. A series of SAR studies were performed to screen the most active part of the triene ansamycins. These results indicate that the stereotriad C11–C13, the CH₃ group at C14, and the OCH₃ group at C3 are essential.^{6,7}

Absolute and relative stereochemistry of the stereogenic centers of these ansamycins have been determined or assigned by Smith and co-workers through careful degradative and spectroscopic methods.⁸ To date, only Smith, Panek, and very recently Hayashi have reported the total synthesis of trienomycin,⁹ mycotrienin,¹⁰ thiazinotrienomycin,¹¹ and cytotrienin A^{4b} as well as the macrocyclic core of cytotrienin.¹² More recently, Kirschning *et al.* reported a multigram scale synthesis of the ansatrienol derivative.¹³

In relation with a program devoted to asymmetric synthesis mediated by sulfoxides,¹⁴ we have recently described a highly stereoselective Reformatsky-type reaction of chiral non racemic α -bromo- α '-sulfinyl ketones with aldehydes in the presence of SmI₂.¹⁵

In this paper, we describe the synthesis of the C9-C16 unit **5** of ansamycins bearing the *anti,syn* stereotriad C11-C13.

(8) (a) Smith, A. B., III; Wood, J. L.; Wong, W.; Gould, A. E.; Rizzo, C. J. J. Am. Chem. Soc. **1990**, 112, 7425. (b) Smith, A. B., III; Wood, J. L.; Wong, W.; Gould, A. E.; Rizzo, C. J.; Barbosa, J.; Komiyama, K.; Omura, S. J. Am. Chem. Soc. **1996**, 118, 8308.

(9) (a) Smith, A. B., III; Barbosa, J.; Wong, W.; Wood, J. L. J. Am. Chem. Soc. **1995**, 117, 10777. (b) Smith, A. B., III; Barbosa, J.; Wong, W.; Wood, J. L. J. Am. Chem. Soc. **1996**, 118, 8316.

(10) (a) Panek, J. S.; Masse, C. E. J. Org. Chem. **1997**, 62, 8290. (b) Masse, C. E.; Yang, M.; Solomon, J.; Panek, J. S. J. Am. Chem. Soc. **1998**, 120, 4123.

(11) (a) Smith, A. B., III; Wan, Z. Org. Lett. **1999**, *1*, 1491. (b) Smith, A. B., III; Wan, Z. J. Org. Chem. **2000**, 65, 3738.

(12) Evano, G.; Schaus, J. V.; Panek, J. S. Org. Lett. 2004, 6, 525.

(13) Kashin, D.; Meyer, A.; Wittenberg, R.; Schöning, K.-U.; Kamlage, S.; Kirschning, A. *Synthesis* **2007**, 304.

(14) Overviews: (a) Carreño, M. C. Chem. Rev. 1995, 95, 1717. (b) Hanquet, G.; Colobert, F.; Lanners, S.; Solladié, G. ARKIVOC 2003, 7, 328. (c) Fernandez, I.; Khiar, N. Chem. Rev. 2003, 103, 3651. Recent work: (c) Colobert, F.; Castanet, A.-S.; Abillard, O. Eur. J. Org. Chem. 2005, 3334. (d) Broutin, P.-E.; Colobert, F. Org. Lett. 2005, 7, 3737. (e) Broutin, P.-E.; Colobert, F. Org. Chem. 2005, 1113. (f) Colobert, F.; Ballesteros-Garrido, R.; Leroux, F. R.; Ballesteros, R.; Abarca, B. Tetrahedron Lett. 2007, 48, 6896. (g) Colobert, F.; Choppin, S.; Ferreiro-Mederos, L.; Obringer, M.; Luengo Arratta, S.; Urbano, A.; Carreño, M. C. Org. Lett. 2007, 9, 4451. (h) Carreño, M. C.; Hernandez-Torres, G.; Urbano, A.; Colobert, F. Eur. J. Org. Chem. 2008, 12, 2035.

(15) (a) Obringer, M.; Colobert, F.; Neugnot, B.; Solladié, G. Org. Lett.
2003, 5, 629. (b) Obringer, M.; Colobert, F.; Solladié, G. Eur. J. Org. Chem.
2006, 1455.

(16) Early work: (a) Carreño, M. C.; García Ruano, J. L.; Martín, A.; Pedregal, C.; Rodríguez, J. H.; Rubio, A.; Sánchez, J.; Solladié, G. J. Org. Chem. 1990, 55, 2120. Recent examples: (b) Lanners, S.; Hassan, N.-A.; Salom-Roig, X. J.; Hanquet, G. Angew. Chem. Int. Ed. 2007, 46, 7086. (c) Raghavan, S.; Krishnaiah, V. Tetrahedron Lett. 2006, 47, 7611. (d) Cardellicchio, C.; Omar, O. H.; Naso, F.; Capozzi, M. A. M.; Capitellic, F.; Bertolasi, V. Tetrahedron: Asymmetry 2006, 17, 223. (e) Des Mazery, R.; Pullez, M.; López, F.; Harutyunyan, S. R.; Minnaard, A. J.; Feringa, B. L. J. Am. Chem. Soc. 2005, 127, 9966.

One synthetic key issue of the ansamycin is the stereocontrol of the stereotriad C11–C13. Using our Reformatsky-type reaction between α -bromo- α '-sulfinyl ketone **6** and the aldehyde **7** as well as the well-established DIBALH or Lewis acid/DIBALH diastereoselective reduction¹⁶ of the corresponding β -keto sulfoxide **8**, we report a highly stereoselective access to the stereotriad (Scheme 1). To facilitate

elucidation of mechanism of action of ansamycins, the development of a methodology allowing the synthesis of some stereoisomers of the stereotriad is highly important. With our methodology, four diastereomers of the stereotriad could be easily accessible depending on the absolute configuration of the sulfinyl moiety.

Scheme 2. Synthesis of the Aldehyde 7

The synthesis of the aldehyde 7^{17} depicted in Scheme 2 began with the formation of the diethyl acetal of ethyl pyruvate in the presence of triethyl orthoformate in concentrated sulfuric acid. Reduction of the ester moiety with LiAlH₄ followed by transacetalization in the presence of diethylene glycol afforded the dioxolane derivative which was then submitted to a Moffatt-type oxidation to give the aldehyde **7** in 52% overall yield.

^{(6) (}a) Kawamura, T; Tashiro, E.; Yamamoto, K.; Shindo, K.; Imoto, M. J. Antibiot. **2008**, *61*, 303. (b) Kawamura, T; Tashiro, E.; Shindo, K.; Imoto, M. J. Antibiot. **2008**, *61*, 312.

^{(7) (}a) Funayama, S.; Anraku, Y.; Mita, A.; Yang, Z.-B.; Shibata, K.; Komiyama, K.; Umezawa, I.; Omura, S. J. Antibiot. **1988**, 41, 1223. (b) Tashiro, E.; Hironiwa, N.; Mitsuhiro, K.; Futamura, Y.; Suzuki, S.-I.; Nishio, M.; Masaya, I. J. Antibiot. **2007**, 60, 549. (c) Kawamura, T; Tashiro, E.; Yamamoto, K.; Shindo, K.; Imoto, M. J. Antibiot. **2008**, 61, 303. (d) Kawamura, T; Tashiro, E.; Shindo, K.; Imoto, M. J. Antibiot. **2008**, 61, 312.

⁽¹⁷⁾ Fujisawa, T.; Kooriyama, Y.; Shimizu, M. Tetrahedron Lett. 1996, 37, 3881.

We applied our SmI₂-promoted Reformatsky-type reaction between α -bromo- α' -*tert*-butylsulfinyl ketone **6** synthesized as previously reported^{15a} and the aldehyde **7**, and we obtained the Reformatsky adduct **8** in excellent *syn* diastereoselectivity¹⁸ and good yield (Scheme 3).

To confirm the absolute configuration of the major stereoadduct, after chromatographic separation and crystallization, suitable crystals were obtained and the structure (3R,4R)-8 was determined by X-ray analysis (Figure 2).

Figure 2. ORTEP plot of (3*R*,4*R*)-**8**. Hydrogen atoms are omitted for clarity.

In order to obtain the (2R,3R,4R,RS) stereotriad of ansamycins, we performed the diastereoselective reduction of **8** with DIBALH in the presence of Yb(OTf)₃ followed by protection of the resulting 1,3-diols by a silylated bridge¹⁹ giving after flash chromatography the enantiopure (2R,3R,4R,RS)-**10** $[[\alpha]^{20}_{D} = +34.8$ (*c* 0.45, CHCl₃)] whose stereochemical assignment was controlled by NOESY experiments (Scheme 4).

It should be pointed out that the stereoisomer (2S,3R,4R,RS) was easily obtained by reduction with DIBALH only, and both diastereomers (2R,3S,4S,SS) and (2S,3S,4S,SS) could be efficiently synthesized using the enantiomer (S) of the sulfinyl moiety.

Treatment of the enantiopure compound 10 under Pummerer conditions²⁰ afforded after flash chromatography the

aldehyde **11**, which was then submitted to a Wittig reaction with $Ph_3P=CH_2$ in THF to give the corresponding olefin **12** in 88% yield. Further regioselective hydroboration of **12** with 9-BBN in THF followed by treatment with NaOH and H_2O_2 afforded the alcohol **13** in 90% yield which was protected as a silylated ether **14** (Scheme 5).

In order to obtain the methyl ketone **16** which will be transformed into the vinylic ester **5**, we had to perform a selective deprotection of the dioxolane **14** in the presence of the silylene bridge. The first attempt using PPTS in acetone and water afforded only the deprotection of the TBDMS

⁽¹⁸⁾ Determined by proton NMR analysis of the product on the basis of our previous results. $^{15}\,$

^{(19) (}a) Corey, E. J.; Hopkins, P. B. *Tetrahedron Lett.* **1982**, *23*, 4871.
(b) Toshima, K.; Jyojima, T.; Miyamoto, N.; Katohno, M.; Nakata, M.; Matsumura, S. *J. Org. Chem.* **2001**, *66*, 1708.

⁽²⁰⁾ Sugihara, H.; Tanikaga, R.; Kaji, A. Synthesis 1978, 881.

ether. Therefore, we tried the deprotection on the free alcohol **13** with PPTS in acetone/water at reflux or with acetic acid/ water at room temperature, but no reaction occurred. Nevertheless, more acidic conditions such as *p*-toluenesulfonic acid in water at room temperature or use of CAN²¹ led to the deprotection of the dioxolane as well as the deprotection of the silylated bridge. Finally, formic acid in presence of CuSO₄²² in a mixture of CH₂Cl₂ and hexane (1/1) afforded the methyl ketone **15** in 65% yield whose primary alcohol was then silylated to give **16** (Scheme 5).

Starting from the methyl ketone **16**, we used the Smith^{8b} procedure to obtain the methyl-substituted double bond with *Z* selectivity. The kinetic enolate of **16** was obtained by treatment with sodium bis(trimethylsilyl)amide and trapped with diethyl chlorophosphate to give the corresponding enol phosphate. Elimination induced by *t*-BuLi provided the terminal alkyne **17** in 73% yield. Treatment of **17** with *t*-BuLi and methyl chloroformiate afforded **18**. Finally, methyl cuprate (Me₂CuLi) addition was performed in THF at -20 °C giving in 61% yield the desired *Z* olefin **5**. The stereochemistry of the double bond was controlled by NOESY experiments considering the interaction between H15 and the adjacent methyl group (Scheme 6).

In conclusion, our strategy based on the stereoselective Reformatsky-type reaction followed by the reduction of β -ketosulfoxides has been exemplified by the enantiopure synthesis of the stereotriad C11–C13 of ansamycin antibio-

tics. The asymmetric synthesis of C9–C16 fragment **5** has been achieved in 11 steps and an overall yield of 6%. Total synthesis of trienomycinol **3** (with R = H) is currently underway in our laboratory.

Acknowledgment. This work was supported by the CNRS and Ministère de la Recherche. M.O. and M.B. thank the Ministère de la Recherche for a fellowship.

Supporting Information Available: Experimental procedures and data for all compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OL901144J

^{(21) (}a) Markó, I. E.; Ates, A.; Gautier, A.; Leroy, B.; Plancher, J.-M.; Quesnel, Y.; Vanherck, J.-C. *Angew. Chem., Int. Ed.* **1999**, *38*, 3207. (b) Ates, A.; Gautier, A.; Leroy, B.; Plancher, J.-M.; Quesnel, Y.; Markó, I. *Tetrahedron Lett.* **1999**, *40*, 1799.

⁽²²⁾ Aubert, C. Gotteland, J. P. Malacria, M. J. Org. Chem. **1993**, 58, 4298. I would like to thank Corinne Aubert for this excellent suggestion.