TRITERPENOIDS FROM WALSURA PISCIDIA*

KOZHIPARAMBIL K. PURUSHOTHAMAN, KALYANI DURAISWAMY, JOSEPH D. CONNOLLY† and DAVID S. RYCROFT†

Captain Srinivasa Murti Research Institute for Ayurveda, Arumbakkam, Madras 600106, India; †Department of Chemistry, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K.

(Received 10 December 1984)

Key Word Index-Walsura piscidia; Meliaceae; triterpenoids; piscidinols A-E; tetranortriterpenoids; piscidofuran.

Abstract—A series of tirucallane (piscidinol A and B) and apotirucallane (piscidinol C-E) derivatives has been isolated from the leaves of *Walsura piscidia*. The fruit yielded a new tetranortriterpenoid, piscidofuran. The structures were assigned on the basis of ¹H NMR and ¹³C NMR evidence.

INTRODUCTION

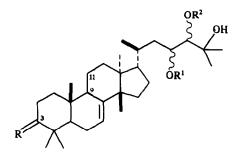
Walsura piscidia Roxb., which is used in traditional medicine in India [1], is synonomous with *Heynea* trifoliata A. Juss, *Trichilia coriacea* Wall and *T. trifoliata* Wall [2, 3]. We now report the results of an examination of the leaves, fruit and bark of this tree.

Two tirucallanes, piscidinols A (1) and B (6) and three apotirucallanes, piscidinol C (8), D (9) and E (10), were isolated from the leaf extract. The fruit yielded a new tetranortriterpenoid, piscidofuran (18), while the known tetranortriterpenoid 7-deacetoxy-7-hydroxyazadirone (19) and its 1,2-dihydro derivative (21) were obtained from the bark.

RESULTS AND DISCUSSION

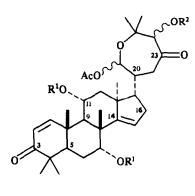
Piscidinol A (1), $C_{30}H_{50}O_4$, mp 195°, $[\alpha]_D - 90^\circ$ (CHCl₃; c 1.0), IR $\nu_{max}^{CCl_4}$ cm⁻¹: 3610, 3575, 1712, has one secondary and seven tertiary methyls (see Experimental), a cyclohexanone ($\delta_{\rm C}$ 217.2), a trisubstituted double bond $[\delta_{\rm H} 5.3 \ (m, \text{H-7}); \ \delta_{\rm C} 145.8 \ (\text{C-8}), \ 117.9 \ (\text{C-7})]$ and one tertiary and two secondary hydroxyl groups [$\delta_{\rm H}$ 3.2 (br s, H-24), 4.15 (m, H-23); $\delta_{\rm C}$ 75.1, 69.7 (both d), 74.3 (s)] and is a tetracyclic triterpenoid. Oxidation of 1 with mercuric acetate gave the heteroannular diene (2) whose UV spectrum (λ_{max} nm: 232, 240, 247) is characteristic of a 7,9(11)-tirucalladiene (or euphadiene) rather than a 7,9(11)-lanostadiene [4]. Piscidinol A (1) formed a diacetate (3) and an acetonide (4) both of which showed hydroxyl absorption in their IR spectra due to the presence of a tertiary hydroxyl group. Oxidation of 1 with sodium metaperiodate yielded the tetranor-ketoaldehyde, 5 $[\delta_{\rm H} 9.75(t)]$. These results suggest that piscidinol A is 3oxo-7-tirucallene-235,245,25-triol (1). The configuration at C-20 is assumed to be S on biogenetic grounds since tirucallane derivatives occur widely in the Meliaceae while euphanes (20R) are restricted to Melia species [5]. The relative stereochemistry of the vicinal diol was not established.

Piscidinol B (6), $C_{30}H_{52}O_4$, mp 240°, differs from 1 only in the absence of a ketonic carbonyl group and the presence of a new secondary hydroxyl group $[\delta_H 3.6 (m, H-3\alpha)]$. It formed a triacetate, 7. The product of sodium borohydride reduction of piscidinol A (1) was identical in all respects with piscidinol B which is, therefore, 7tirucallene-3 β ,23 ξ ,24 ξ ,25-tetrol (6).


It is apparent from the ¹H NMR and ¹³C NMR shifts (see Experimental and Table 1) of piscidinols C (8), D (9) and E (10) and their derivatives that they are apotirucallanes which have in common seven tertiary methyls, a ring A enone, an oxygen substituent at C-7, an 11α -hydroxyl group, a 14,15-double bond and a side chain which includes a cyclic hemiacetal acetate, a ketone and a secondary alcohol. The nature of this side chain was established by decoupling experiments on the acetylation products of piscidinol D (see below).

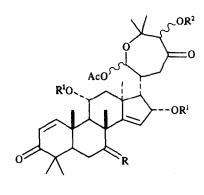
In addition to the above functional groups, piscidinol D (9), $C_{32}H_{46}O_9$, contains a secondary hydroxyl group attached to C-16. Acetylation afforded the tetra-acetate (11) which still retains a free secondary hydroxyl group (IR v_{max} cm⁻¹: 3590, 3540) and the penta-acetate (12) which has no hydroxyl absorption. Thus, there is no tertiary hydroxyl function in piscidinol D and the singlet oxygen-bearing carbon [δ_C 72.2 (C-25)] must be part of the cyclic hemiacetal.

In the tetra-acetate (11), H-15 is a doublet (J = 3.2 Hz)which is coupled to a secondary acetate proton, H-16 $\delta_{\rm H}$ 5.26 (dd, J = 5.7, 3.2 Hz)]. Irradiation of H-16 affects H-17 (ca δ 1.7) which is in turn, coupled to H-20. Irradiation of H-20 causes the simultaneous collapse of H-17, the hemiacetal acetate proton H-21 and the methylene multiplet arising from 2H-22. The ketonic carbonyl group must be placed at C-23 since the geminal coupling constant of 2H-22 is 16 Hz. The remaining secondary hydroxyl group $[\delta_{\rm H} 3.85 (s, {\rm H-24})]$, which acetylates more slowly than the OH-7 group is, therefore, attached to C-24. In the penta-acetate (12), H-24 shows the expected downfield shift to $\delta_{\rm H}$ 5.16. The side chain is completed as in 11 and 12 by the formation of an ether link between C-25 and C-21 to give a seven-membered cyclic hemiacetal acetate.


The configurations at C-7 and C-11 of 11 and 12 are readily defined from the coupling data. Thus, H-7 is a

^{*}This species is most widely described under the name Walsura piscidia Roxb. although a referee points out that the valid name is Walsura trifoliata (A. Juss) Harms.

 $R = 0; R^{1} = R^{2} = H$ $\Delta^{9(11)}(1)$ $R = 0; R^{1} = R^{2} = Ac$ $R = 0; R^{1} = R^{2} = CMe_{2}$ $R = H, \beta OH; R^{1} = R^{2} = H$ $R = H, \beta OAc; R^{1} = R^{2} = Ac$



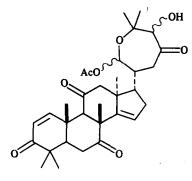
8
$$R^1 = R^2 = H$$

14 $R^1 = R^2 = Ac$
15 $R^1 = Ac; R^2 = H$

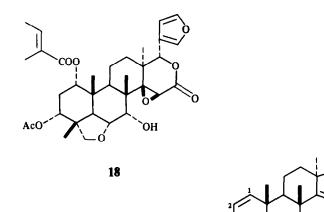
narrow triplet (J = 2.5 Hz) and is, therefore, β -orientated (equatorial) while H-11 appears as a double doublet of doublets (J = 10.0, 5.7, 2.5 Hz) coupled to H-9 [$\delta_{\text{H}} 2.66 (d, J = 10.0 \text{ Hz})$] and the C-12 methylene group and is, therefore, β -orientated (axial) (cf 11 α -acetoxyazadirone [6]). The normal tirucallane stereochemistry at C-17 and C-20 is assumed. The configuration of the O-16 substituent is assigned as α since one methyl ¹³C resonance (C-18) is shifted downfield by $\Delta\delta4$ in tetra-acetate 11 with respect to the corresponding derivative of piscidinol C, 16-deoxypiscidinol D (15) (see below). The introduction of an O-16 function also causes an upfield shift ($\Delta\delta3.3$) of C-20 in 11 relative to 15. The configurations at C-21 and C-24 remain unassigned.

Piscidinol E (10), $C_{32}H_{44}O_9$ is readily identified as the 7-ketone corresponding to piscidinol D. It forms the triacetate (13) which contains an extra ketonic carbonyl group (δ_c 206.1) and lacks the characteristic H-7 β triplet.

 $R = H, \alpha OH; R^1 = R^2 = H$ $R = O; R^1 = R^2 = H$ $R = H, \alpha OAc; R^1 = Ac; R^2 = H$ $R = H, \alpha OAc; R^1 = R^2 = Ac$


13 $R = O; R^1 = Ac; R^2 = H$

Comparison of the ¹³C NMR shifts of 11 and 13 supports the assignment of structure 10 for piscidinol E.


Piscidinol C (8), $C_{32}H_{46}O_8$, mp 215°, is 16-deoxypiscidinol D. It forms the tetra-acetate (14) and the triacetate (15). Comparison of the spectroscopic properties of 14 and 15 with the corresponding acetates (11 and 12) of piscidinol D confirms their close relationship. The main difference lies in the resonances associated with ring D. The H-15 appears as a doublet of doublets (J = 3, 1.5 Hz) due to coupling with the C-16 methylene group.

Oxidation of piscidinol C (8) with Jones reagent afforded two products, the more polar being the 7,11diketone (16) and the less polar the corresponding 1,2epoxide (17) ($\delta_{\rm H}$ 3.44, 4.08, ABq, J = 4.7 Hz, H-1, H-2). The C-24 secondary hydroxyl is resistant to oxidation under the conditions used.

Extraction of the fruit of Walsura piscidia afforded a new tetranortriterpenoid, piscidofuran (18), $C_{33}H_{42}O_{10}$,

16 17 1,2 - epoxy

19 R = H 20 R = Ac 21 R = H; 1,2 - dihydro

mp 225°, whose spectroscopic properties (see Table 1 and Experimental) revealed the presence of the characteristic β -substituted furan and ring D epoxylactone, four tertiary methyl groups, a primary-secondary ether [$\delta_{\rm H}$ 3.47, 3.25 (ABq, J = 9 Hz, 2H-28), 4.02 (dd, J = 12, 3 Hz, H-6)], asecondary hydroxyl group $[\delta_{H} 3.5 (d, J = 3 \text{ Hz}, \text{H-7})]$ and two secondary esters $[\delta_{\rm H} 5.\bar{1}5, 5.05 \text{ (both } t, J = 3 \text{ Hz}, \text{H-1},$ H-3)], namely a tiglate and an acetate. Irradiation of the secondary ether terminus (H-6) caused the simultaneous collapse to singlets of the proton (H-7) attached to the carbon bearing the secondary hydroxyl group and a doublet (J = 12 Hz, H-5) at $\delta 2.5$. These chemical shift and coupling data are consistent with structure 18 for piscidofuran. The tiglate ester is placed at C-1 by analogy with salannin which has the same structural features in rings A and B [7]. As expected, the secondary hydroxyl group failed to react under mild acetylation conditions.

Chromatography of the bark extract yielded 7deacetoxy-7-hydroxyazadirone (19) which was identified by comparison with published data and by acetylation to azadirone (20) [8]. Later fractions afforded a crystalline mixture of 19 and its 1,2-dihydro derivative (21) (m/z) 396, 394). These could not be separated but mild hydrogenation of the mixture over Pd/C gave pure 21.

EXPERIMENTAL

All mps are uncorr. IR spectra were recorded using KBr discs or in CCl₄ solns. ¹H NMR spectra were measured in CDCl₃ solns on Perkin–Elmer R32 (90 MHz, int. standard TMS at δ 0) and Bruker WP200SY (200 MHz, int. standard CHCl₃ at δ 7.25) instruments.

The leaves, fruit and bark of *Walsura piscidia* were collected on the outskirts of Madras and Kodikarai (Point Calimere), Tanjore district, India in July and were shade-dried. Reference samples of plant material are deposited in the Herbarium of the Captain Srinivasa Murti Research Institute, India.

Isolation of piscidinols A-E. Coarsely powdered leaves (8 kg) were exhaustively extracted with *n*-hexane and CHCl₃ by cold percolation. The two extracts were found to be similar on TLC (C₆H₆-EtOAc, 4:1 and 1:1) and were combined. The total extract (50 g) was chromatographed over silica gel (800 g) and eluted with *n*-hexane, C₆H₆ and increasing quantities of EtOAc in C₆H₆. Fractions eluted with *n*-hexane contained fats. Elution

Table 1. ¹³C NMR chemical shifts (CDCl₃ solutions) of compounds 8, 9, 11, 13, 15 and 18

Carbon No.	8* 160.7	15 † 158.2	9* 161.9	11 † 157.9	13 † 156.3	18*	
1						78.3	
2	123.6	124.3	123.3	124.5	124.8	25.8	
3	205.0	203.7	205.2	203.6	202.3	72.7	
4	40.8	40.5	40.8	40.5	40.3	39.1	
5	45.3	45.4	45.6	45.5	48.5	40.3	
6	24.2	23.5	24.5	23.5	35.6	73.5	
7	71.3	73.9	72.2	74.1	206.1	72.0	
8	44.3	42.4	44.2	42.6	51.6	44.6	
9	40.1	43.7	45.3	43.4	51.6	35.7	
10	44.3	44.3	44.2	44.3	44.8	42.2	
11	66.6	69.9	66.4	69.3	69.0	13.9	
12	46.0	40.2	46.1	39.2	39.0	30.2	
13	46.2	45.4	46.1	46.1	46.6	40.3	
13	160.7	158.0	166.9	166.2	159.0	70.1	
15	119.1	118.6	121.7	119.5	126.1	56.1	
16	33.4	33.6	73.8	76.9	76.7	167.3	
17	54.1	54.1	56.8	55.3	55.1	71.5	
20	39.7	40.1	36.5	36.8	36.6	120.7	
21	90.7	90.3	91.4	90.1	90.1	141.2	
22	44.3	43.1	44.2	42.6	42.8	110.0	
23	207.9	208.0	208.0	207.0	207.0	142.9	
24	80.5	80.1	81.3	80.3	80.3		
25	72.2	72.0	72.2	71.9	71.9	_	
	29.7	29.3	29.7	29.0	29.7	18.8	
C-Me	26.8	26.6	26.8	26.6	26.2	18.5	
	26.2	26.2	25.9	26.3	26.2	17.5	
	24.7	24.4	25.2	24.6	24.9	15.9	
	21.6	21.8	24.5	23.7	24.5	10.0	
	20.1	20.1	21.6	21.8	21.6		
	19.5	19.7	20.4	20.1	19.3		
	17.5	17.7	20.4	20.1	17.5	77.8 (C-28)	Tiglate
Ac	20.9	21.3	21.1	21.2	21.2	20.9	1′ 166.9
	20.9	21.0	21.1	21.1	20.9	20.7	2' 128.8
		20.8		20.8 (2)	20.7		3' 137.5
		20.0		20.0 (2)	20.7		4' 14.6
							5' 12.4
C=0	169.6	170.0	170.2	170.0	170.2	169.1	5 12.4
	107.0	169.9	170.2	169.8	169.8	107.1	
		169.0		169.2	169.0		
		107.0		169.0	107.0		

*Varian XL100 (25.16 MHz, int. standard TMS at δ 0). Multiplicities determined from offresonance decoupled spectra.

† Bruker WP200SY (50.13 MHz, int. standard CDCl₃ at δ 77.0). Multiplicities determined from DEPT spectra.

with C_6H_6 yielded a gum which, on repeated CC over silica gel afforded sitosterol (50 mg).

Piscidinol A (1). Further CC of the mixture (elution with C_6H_6 -EtOAc, 9:1) gave piscidinol A (1) (100 mg): mp 195° (ex. MeOH); $[\alpha]_D^{25} - 90^\circ$ (CHCl₃; c 1.0); IR v ^{KBs}_{max} cm⁻¹: 3550, 3425, 3350, 2950, 2860, 1690, 1650, 1460, 1380, 1370, 1285, 1240, 1210, 1150, 1026, 950, 890, 870, 800; MS *m*/*z*: 474 [M]⁺; ¹H NMR (90 MHz): $\delta 5.3$ (*m*, H-7), 4.15 (*m*, H-23), 3.2 (*br* s, H-24), 1.32 (2), 1.04 (2), 1.16, 1.10, 0.86 (C-Me), 0.98 (*d*, J = 8 Hz, CH-Me). (Found: C, 75.65; H, 10.55. C₃₀H₅₀O₄ requires: C, 75.90; H, 10.55%.)

Piscidinol B (6). Further elution of the column with the same solvent yielded piscidinol B (6) (150 mg): mp 240° (ex. MeOH);

IR $v_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3550, 3300, 2950, 1450, 1370, 1155, 1032, 1022, 990, 820; MS m/z: 476 [M]⁺, ¹H NMR (90 MHz) (CDCl₃ and CD₃COCD₃): δ 5.3 (m, H-7), 4.15 (m, H-23), 3.6 (m, H-3), 3.18 (br s, H-24), 1.25 (2), 0.80, 0.78, 0.70, 0.60 (2) (C-Me), 0.95 (d, J = 8 Hz, CH-<u>Me</u>). (Found: C, 76.00; H, 10.50. C₃₀H₅₂O₄ requires: C, 75.65; H, 10.90 %.)

Piscidinol C (8). The mixture eluted with C_6H_6 -EtOAc (4:1 and 1:1) was rechromatographed over silica gel. Elution with C_6H_6 -EtOAc (4:1) yielded piscidinol C (8) (500 mg): mp 215° (ex. MeOH); IR v $\frac{KBr}{Max}$ cm⁻¹: 3500, 2900, 1740, 1710, 1650, 1440, 1398, 1220, 1100, 930; MS m/z: 498 $[M-60]^+$; ¹H NMR (90 MHz): δ 1.02, 1.05, 1.10, 1.15 (2), 1.20 (2) (C-Me), 2.12 (Ac), 3.85 (s, H-24), 3.95 (t, J = 3 Hz, H-7), 4.40 (m, H-11), 5.5 (br t, H-

15), 6.32 (br s, H-21), 5.77, 7.97 (both d, J = 10 Hz, H-2, H-1). (Found: C, 68.50; H, 7.85. $C_{32}H_{46}O_8$ requires: C, 68.80; H, 8.20%)

Piscidinol D (9). Further elution of the column with EtOAc- C_6H_6 (4:1) gave piscidinol D (9) (300 mg) as a gum: IR v_{max}^{KBr} cm⁻¹: 3420, 2960, 2920, 1735, 1710, 1650, 1380, 1230, 1010, 950; ¹H NMR (90 MHz): $\delta 1.05$ (2), 1.15, 1.21, 1.22, 1.25, 1.44 (C-Me), 2.15 (Ac), 3.89 (s, H-24), 4.02 (br t, H-7), 4.42 (m, H-11, H-16), 5.70 (d, J = 3 Hz, H-15), 6.40 (br s, H-21), 5.79, 8.03 (both d, J = 10 Hz, H-2, H-1). (Found: C, 63.80; H, 7.80. C₃₂H₄₆O₉·2H₂O requires: C, 63.95; H, 8.10%)

Piscidinol E (10). The intermediate fractions between piscidinols C (8) and D (9) were rechromatographed over silica gel. C₆H₆-EtOAc (1:1) yielded piscidinol E (10) as a gum (200 mg): IR v_{max}^{KBr} cm⁻¹: 3450, 1750, 1700, 1660; ¹H NMR (200 MHz): δ1.10, 1.15, 1.20, 1.25, 1.37, 1.44, 1.46 (C-Me), 2.16 (Ac), 2.31 (d, J = 8.9 Hz, H-9), 3.87 (s, H-24), 4.41 (dd, J = 5.6, 3.4 Hz, H-16), 4.48 (m, H-11), 6.13 (d, J = 3.4 Hz, H-15), 6.37 (d, J = 1.5 Hz, H-21), 5.83, 8.10 (both d, J = 10.5 Hz, H-2, H-1). Prep. TLC of the crude acetylation product of 10 gave the triacetate 13 as a gum; IR v^{CCl}_{max} cm⁻¹: 3595, 3540, 1755 (sh), 1742, 1722, 1680; ¹H NMR (200 MHz): δ 1.07, 1.11, 1.18, 1.23, 1.36, 1.39 (2) (C–Me), 2.02, 2.11, 2.14 (Ac) 2.55 (d, J = 10 Hz, H-9), 3.85 (s, H-24), 5.26 (dd, J = 5.8, 3.4 Hz, H-16), 5.44 (m, H-11), 6.20 (d, J = 3.4 Hz, H-15), 6.22 (d, J = 2.9 Hz, H-21), 5.81, 7.22 (both d, J = 10.5 Hz, H-2, H-1). (Found: C, 65.80; H, 7.30. C₃₆H₄₈O₁₁ requires: C, 65.85; H, 7.30%.)

Piscidofuran (18). Coarsely powdered fruit of Walsura piscidia was exhaustively extracted with *n*-hexane followed by CHCl₃. The total extract was chromatographed over silica gel and the column eluted with *n*-hexane, C₆H₆ and mixtures of C₆H₆-EtOAc as above. Waxy material was removed by elution with *n*-hexane. Elution with C₆H₆-EtOAc (4:1) gave piscidofuran (18) (200 mg): mp 225° (ex. MeOH); IR v ^{KBr}_{max} cm⁻¹: 3420, 2910, 1770, 1740, 1710, 1510, 1380, 1250, 1165, 1110, 1050, 900, 880, 830, 750; MS *m/z*: 598 [M]⁺; ¹H NMR (90 MHz): δ 7.35 (H-21, H-23), 6.9 (*m*, H-3'), 6.35 (H-22), 5.5 (*s*, H-17), 5.15, 5.05 (both *t*, *J* = 3 Hz, H-1, H-3), 4.02 (*dd*, *J* = 12, 3 Hz, H-6), 3.8 (*s*, H-15), 3.5 (*d*, *J* = 3 Hz, H-7), 3.47, 3.25 (ABq, *J* = 9 Hz, 2H-28), 2.5 (*d*, *J* = 12 Hz, H-5), 1.9 (*m*, tiglate Mes), 2.0 (Ac), 1.2, 1.1, 1.05, 0.92 (C-Me). (Found: C, 66.40; H, 7.40. C₃₃H₄₂O₁₀ requires: C, 66.20; H, 7.65%)

7-Deacetoxy-7-hydroxyazadirone (19). Coarsely powdered bark (2 kg) was extracted with *n*-hexane and CHCl₃ in the cold. The combined extracts (25 g) were chromatographed over silica gel. Elution with C₆H₆-EtOAc (9:1) gave 7-deacetoxy-7hydroxyazadirone (19) (500 mg): mp 203° (ex. MeOH); IR ν_{max}^{KBr} cm⁻¹: 3550, 1670; MS *m/z*: 394 [M]⁺; ¹H NMR (90 MHz): δ 7.35 (H-21, H-23), 7.10, 5.70 (both *d*, *J* = 10 Hz, H-1, H-2), 6.25 (H-22), 5.55 (*m*, H-15), 4.0 (*m*, H-7), 1.12, 1.10, 1.05, 1.0, 0.95 (C-Me). (Found: C, 79.30; H, 8.40. C₂₆H₃₄O₃ requires: C, 79.20; H, 8.65%) Later eluates with the same solvent gave a crystalline compound, mp 160°, which proved to be a mixture of 19 and its 1,2-dihydro derivative (21); IR ν_{max}^{KBr} cm⁻¹: 3550, 1700, 1670; MS *m/z*: 396, 394.

Acetylation of piscidinol A (1). Piscidinol A (1) (60 mg) in dry pyridine (2 ml) was treated with Ac₂O at room temp. for 12 hr. The usual work-up afforded the acetate 3 (40 mg): mp 226° (ex. MeOH); IR v^{MBr}_{max} cm⁻¹: 3520, 1740, 1710; MS m/z: 558 [M]⁺; ¹H NMR (90 MHz): δ 5.45 (m, H-23), 5.3 (m, H-7), 4.88 (br s, H-24), 2.18, 2.02 (Ac), 1.2, 1.15, 1.08, 1.0, 0.95 (2), 0.78 (C-Me), 0.98 (d, J = 8 Hz, CH-Me). (Found: C, 73.70; H, 9.65. C₃₄H₅₄O₆ requires: C, 73.80; H, 9.65%.)

Piscidinol A acetonide (4). Piscidinol A (1) (50 mg), in dry Me_2CO (10 ml) containing dry CuSO₄ (50 mg), was heated on a water bath for 30 hr. Filtration and removal of solvent afforded

the acetonide 4 (50 mg): mp 130° (ex. MeOH); IR $\nu_{\rm MEr}^{\rm MBr}$ cm⁻¹: 3300, 1650; MS m/z: 514 [M]⁺: ¹H NMR (90 MHz): δ 5.3 (m, H-7), 3.95 (m, H-23), 3.46 (d, J = 8 Hz, H-24), 1.35 (2), 1.2, 1.12, 1.08, 1.0, 0.98, 0.78 (C-Me), 0.95 (d, J = 8 Hz, CH-Me). (Found: C, 77.00; H, 10.50. C₃₃H₅₄O₄ requires: C, 77.05; H, 10.50%.)

Sodium periodate oxidation of piscidinol A (1). Piscidinol A (1) (100 mg) in MeOH was treated with NaIO₄ (25 mg) in H₂O (3 ml) and the soln left at room temp. for 48 hr. The crude product, obtained by evaporation of the solvent, was chromatographed over silica gel. Elution with C₆H₆-EtOAc (9:1) gave the aldehyde 5 (70 mg): mp 135° (ex. Et₂O-hexane); IR ν_{max}^{CC14} cm⁻¹: 2988, 2710, 1730, 1710; MS m/z: 384 [M]⁺; ¹H NMR (90 MHz): δ 9.75 (t, CHO), 5.3 (m, H-7), 1.1, 1.02, 1.0, 0.99, 0.85 (C-Me). (Found: C, 80.75; H, 10.40. C₂₆H₄₀O₂ requires: C, 81.25; H, 10.40%)

Mercury (II) oxidation of piscidinol A (1). Piscidinol A (1) (100 mg) and Hg(OAc)₂ (150 mg) were dissolved in glacial HOAc (15 ml) and left at room temp. for 24 hr. Filtration and removal of solvent afforded the diene 2 (50 mg): mp 190° (ex. MeOH); MS m/z: 472 [M]⁺; UV λ_{max} nm (e): 232 (13 600), 240 (14 200), 247 (9600). (Found: C, 76.10; H, 10.15. C₃₀H₄₈O₄ requires: C, 76.25; H, 10.20%.)

Sodium borohydride reduction of piscidinol A (1). A soln of piscidinol A (1) (50 mg) and NaBH₄ (80 mg) in EtOH (20 ml) was stirred at room temp. for 24 hr. Dilution with H₂O, acidification with dil. HCl and extraction with CH₂Cl₂ yielded a gum which was chromatographed over silica gel. Elution with C₆H₆-EtOAc (4:1) gave a compound identical in all respects with piscidinol B (6).

Acetylation of piscidinol B (6). Piscidinol B (6) (100 mg) was treated with Ac₂O (2.5 ml) in dry pyridine (2 ml) at room temp. for 4 hr. The normal work-up gave the acetate 7 (70 mg): mp 145° (ex. MeOH); MS m/z: 602 [M]⁺; ¹H NMR (90 MHz): δ 5.35 (m, H-23), 5.25 (m, H-7), 4.88 (br s, H-24), 4.52 (m, H-3), 2.15, 2.02, 2.0 (Ac), 1.2, 1.15, 1.02, 1.0, 0.82, 0.75, 0.72, (C-Me), 0.98 (d, J = 8 Hz, CH-<u>Me</u>). (Found: C, 71.50; H, 9.55. C₃₆H₅₈O₇ requires: C, 71.75; H, 9.65%.)

Acetylation of piscidinol C (8). Piscidinol C (8) was acetylated under the usual conditions. The crude product was chromatographed over silica gel. Elution with C_6H_6 -EtOAc (9:1) gave the triacetate 15: mp 220° (ex. MeOH); IR v_{max}^{CCl₄} cm⁻¹: 3590, 3540, 1765, 1743, 1720 (sh), 1680; ¹H NMR (200 MHz): δ 1.05, 1.07, 1.14, 1.19, 1.20, 1.24 (2) (C-Me), 1.96, 2.11, 2.15 (Ac), 2.26 (dd, J = 12, 3 Hz, H-5), 2.46 (m, 2H-22), 2.53 (d, J = 9.7 Hz, H-9), 3.86 (s, H-24), 5.25 (t, J = 2.5 Hz, H-7), 5.33 (dd, J = 3.5, 1.5 Hz, H-15), 5.41 (ddd, J = 9.7, 6, 1.5 Hz, H-11), 6.20 (d, J = 2 Hz, H-21), 5.78, 7.16 (both d, J = 10.5 Hz, H-2, H-1). (Found: C, 66.50; H, 7.55. C38H52O11 requires: C, 66.65; H, 7.60%) Elution with C_6H_6 -EtOAc (4:1) yielded the tetra-acetate 14: mp 160° (ex. MeOH); IR v_{max}^{CCl} cm⁻¹: 1765, 1743, 1735, 1680; ¹H NMR (200 MHz): δ1.04, 1.07, 1.13, 1.20, 1.24, 1.35, 1.61 (C-Me), 1.95 (2), 2.10, 2.16 (Ac), 2.27 (dd, J = 12, 3 Hz, H-5), 2.42 (m, 2H-22), 2.54 (d, J = 9.5 Hz, H-9), 5.16 (s, H-24), 5.25 (t, J = 2.5 Hz, H-7), 5.32(dd, J = 3, 1.5 Hz, H-15), 5.41 (ddd, J = 9.5, 6, 1.5 Hz, H-11), 6.20(d, J = 2 Hz, H-21), 5.79, 7.14 (both d, J = 10.5 Hz, H-2, H-1).(Found: C, 67.25; H, 7.60. C₃₆H₅₀O₁₀ requires: C, 67.30; H, 7.80 %.)

Acetylation of piscidinol D (9). Acetylation of piscidinol D (9) (500 mg) afforded a mixture which was chromatographed over silica gel. C_6H_6 -EtOAc (9:1) eluted the tetra-acetate 11 (40 mg): mp 260° (ex. Et₂O-hexane); IR ν_{max}^{CCL} cm⁻¹: 3590, 3540, 1748, 1720 (sh), 1680; ¹H NMR (200 MHz): $\delta 1.05$, 1.07, 1.20, 1.21, 1.24, 1.26, 1.42 (C-Me), 1.93, 1.99, 2.13, 2.16 (Ac), 2.26 (dd, J = 12, 4 Hz, H-5), 2.43 (m, 2H-22), 2.66 (d, J = 10 Hz, H-9), 2.69 (dddd, J = 11, 10, 8, 2.9 Hz, H-20), 3.87 (s, H-24), 5.26 (dd, J = 5.7, 3.2 Hz, H-16), 5.27 (t, J = 2.5 Hz, H-7), 5.39 (ddd, J = 10, 5.7, 2.5 Hz, H-

11), 5.68 (d, J = 3.2 Hz, H-15), 6.26 (d, J = 2.9 Hz, H-21), 5.79, 7.17 (both d, J = 10.5 Hz, H-2, H-1). (Found: C, 65.0; H, 7.40. C₃₈H₅₂O₁₂ requires: C, 65.15; H, 7.40%) Elution with C₆H₆-EtOAc (4:1) eluted the penta-acetate 12 (30 mg) as a gum: IR ν_{max}^{CCL} cm⁻¹: 1748, 1680; ¹H NMR (200 MHz): δ 1.05, 1.07, 1.20, 1.24, 1.37, 1.41, 1.62 (C-Me), 1.92, 1.96, 2.00, 2.12, 2.17 (Ac), 2.28 (dd, J = 11.5, 3.5 Hz, H-5), 2.65 (d, J = 9.8 Hz, H-9), 2.7 (m, H-20), 5.16 (s, H-24), 5.23 (dd, J = 6.9, 3.3 Hz, H-16), 5.25 (t, J = 2.5 Hz, H-7), 5.41 (m, H-11), 5.69 (d, J = 3.3 Hz, H-15), 6.24 (d, J = 3 Hz, H-21), 5.78, 7.15 (both d, J = 10.5 Hz, H-2, H-1). (Found: C, 64.50; H, 7.25. C₄₀H₅₄O₁₃ requires: C, 64.70; H, 7.30%)

Oxidation of piscidinol C (8). Piscidinol C (8) (80 mg) in Me₂CO at 0° was treated with excess Jones reagent. The usual work-up afforded a crude product which showed two spots on TLC. These were separated by prep. TLC to give the 7,11-diketone 16: ¹H NMR (200 MHz): $\delta 1.11$, 1.14, 1.19, 1.22, 1.25, 1.36, 1.62 (C-Me), 2.18 (Ac), 3.08 (s, H-9), 3.85 (s, H-24), 6.07 (dd, J = 3.4, 1.6 Hz, H-15), 6.14 (br s, H-21), 5.90, 7.33 (both d, J = 10.2 Hz, H-2, H-1); MS m/z: 536.2758, C₃₂H₄₀O₇ [M - H₂O]⁺ requires: 536.2774; and the corresponding 1,2-epoxide 17: ¹H NMR (200 MHz): $\delta 1.02$, 1.10, 1.20, 1.25, 1.27, 1.35, 1.46 (C-Me), 2.17 (Ac), 3.31 (s, H-9), 3.44, 4.08 (both d, J = 4.7 Hz, H-1, H-2), 3.85 (s, H-24), 6.00 (dd, J = 3.4, 1.5 Hz, H-15), 6.15 (br s, H-21); MS m/z: 552.2730, C₃₂H₄₀O₈ [M - H₂O]⁺ requires: 552.2723.

Acetylation of 7-deacetoxy-7-hydroxyazadirone (19). Acetylation of 19 (100 mg) afforded azadirone (20) (70 mg): mp 130° (ex. MeOH); MS m/z: 436 [M]⁺; ¹H NMR (90 MHz): δ 7.32 (H-21, H-23), 7.10, 5.78 (both d, J = 10 Hz, H-1, H-2), 6.22 (H-22), 5.33 (t, J = 3 Hz, H-7), 5.27 (m, H-15), 1.93 (Ac), 1.2, 1.18, 1.02 (2), 0.78 (C-Me), identical with an authentic sample. (Found: C, 77.0; H, 8.05. C₂₈H₃₆O₄ requires: C, 77.05; H, 8.25%) Hydrogenation of the mixture of 19 and 21. The mixture (100 mg) in MeOH was hydrogenated over 10% Pd/C for 2 hr. The usual work-up gave 1,2-dihydro-7-deacetoxy-7-hydroxy-azadirone (21) (80 mg): mp 160° (ex. MeOH); IR ν_{max}^{KBr} cm⁻¹: 3500, 1700; MS m/z: 396 [M]⁺; ¹H NMR (90 MHz): δ 7.4 (H-21), 7.3 (H-23), 6.3 (H-22), 5.55 (m, H-15), 4.0 (m, H-7), 1.2, 1.1, 1.05, 1.0, 0.8 (C-Me), identical with an authentic sample. (Found: C, 78.75; H, 9.05. C₂₆H₃₆O₃ requires: C, 78.80; H, 9.10%)

Acknowledgements—We wish to thank the Central Council for Research in Ayurveda and Siddha, India for financial support (to K.K.P. and K.D.), and Mrs P. Brindha and Mrs B. Sasikala for collection and identification of the plant material.

REFERENCES

- Nadkarni, K. (1976) Indian Materia Medica, Vol. 1, p. 1290. Popular Prakasam, Bombay.
- Hooker, J. D. (1875) The Flora of British India, Vol. 1, p. 564. Reeve, London.
- Gamble, J. S. (1967) Flora of Madras Vol. 1, p. 131. Botanical Survey of India, Calcutta.
- Connolly, J. D., Handa, K. L., McCrindle, R. and Overton, K. H. (1968) J. Chem. Soc. C 2230.
- 5. Taylor, D. A. H. (1984) Prog. Chem. Org. Nat. Prod. 45, 6.
- 6. Halsall, T. G. and Troke, J. A. (1975) J. Chem. Soc. Perkin Trans. 1, 1758.
- Henderson, R., McCrindle, R., Melera, A. and Overton, K. H. (1968) Tetrahedron 24, 1525.
- Ayafor, J. F., Sondengam, B. L., Connolly, J. D., Rycroft, D. S. and Okogun, J. I. (1981) J. Chem. Soc. Perkin Trans. 1, 1750.