
This article was downloaded by: [Michigan State University] On: 09 February 2015, At: 19:14 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Carbohydrate Chemistry

Publication details, including instructions for authors and subscription information: <u>http://www.tandfonline.com/loi/lcar20</u>

Synthetic Studies on Sialoglycoconjugates 89: Synthesis of Ganglioside GM₃ and KDN-GM₃ Containing Different Carbon-Chain Length Fatty Acyl Groups at the Ceramide Residue

Akira Hasegawa $^{\rm a}$, Naomi Suzuki $^{\rm a}$, Fumitaka Kozawa $^{\rm a}$, Hideharu Ishida $^{\rm a}$ & Makoto Kiso $^{\rm a}$

^a Department of Applied Bioorganic Chemistry, Gifu University, Gifu, 501-11, Japan Published online: 22 Aug 2006.

To cite this article: Akira Hasegawa, Naomi Suzuki, Fumitaka Kozawa, Hideharu Ishida & Makoto Kiso (1996) Synthetic Studies on Sialoglycoconjugates 89: Synthesis of Ganglioside GM₃ and KDN-GM₃ Containing Different Carbon-Chain Length Fatty Acyl Groups at the Ceramide Residue, Journal of Carbohydrate Chemistry, 15:5, 639-648, DOI: <u>10.1080/07328309608005680</u>

To link to this article: http://dx.doi.org/10.1080/07328309608005680

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms &

Conditions of access and use can be found at <u>http://www.tandfonline.com/page/terms-and-conditions</u>

SYNTHETIC STUDIES ON SIALOGLYCOCONJUGATES 89: SYNTHESIS OF GANGLIOSIDE GM3 AND KDN-GM3 CONTAINING DIFFERENT CARBON-CHAIN LENGTH FATTY ACYL GROUPS AT THE CERAMIDE RESIDUE

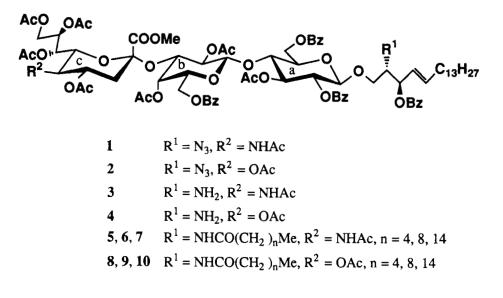
Akira Hasegawa, Naomi Suzuki, Fumitaka Kozawa, Hideharu Ishida and Makoto Kiso

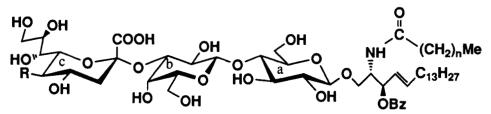
Department of Applied Bioorganic Chemistry, Gifu University, Gifu 501-11, Japan

Received January 27, 1996 - Final Form March 21, 1996

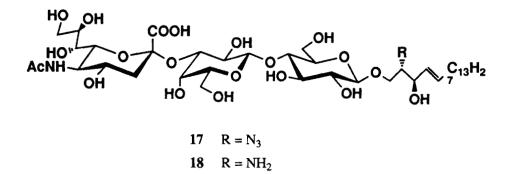
ABSTRACT

Ganglioside GM3 and KDN-ganglioside GM3, containing hexanoyl, decanoyl, and hexadecanoyl groups at the ceramide moiety have been synthesized. Selective reduction of the azido group in O-(methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5dideoxy-D-glycero- α -D-galacto-2-nonulopyranosylonate)-(2 \rightarrow 3)-O-(2,4-di-Oacetyl-6-O-benzoyl- β -D-galactopyranosyl)-(1 \rightarrow 4)-O-(3-O-acetyl-2,6-di-O-benzoyl- β -Dglucopyranosyl)-(1 \rightarrow 1)-(2S,3R,4E)-2-azido-3-O-benzoyl-4-octadecene-1,3-diol (1) and O-(methyl 4,5,7,8,9-penta-O-acetyl-3-deoxy-D-glycero- α -D-galacto-2nonulopyranosylonate)-(2 \rightarrow 3)-O-(2,4-di-O-acetyl-6-O-benzoyl- β -D-galactopyranosyl)-(1 \rightarrow 4)-O-(3-O-acetyl-2,6-di-O-benzoyl- β -D-glucopyranosyl)-(1 \rightarrow 1)-(2S,3R,4E)-2azido-3-O-benzoyl-4-octadecene-1,3-diol (2), coupling with hexanoic, decanoic, and hexadecanoic acids, O-deacylation, and de-esterification gave the title gangliosides GM3 (11~13) and KDN-GM3 (14~16) in good yields. On the other hand, Odeacylation of 1 and subsequent de-esterification gave 2-azido-sphingosine containing-GM3 analogue 17, which was converted into lyso-GM3, in which no fatty acyl group was substituted at the sphingosine residue, by selective reduction of the azido group.


Copyright © 1996 by Marcel Dekker, Inc.


INTRODUCTION

Ganglioside GM3 has various types of important biological functions,¹ and those activities are strictly related to the structure of sialic acid, oligosaccharide chain and fatty-acyl residue at the ceramide mojety. Gangliosides are potent inhibitors of cellular immune responses, and the structures of gangliosides greatly influence their activity.^{2,3} Recent studies using chemically synthesized gangliosides GM3 and GM4 and their analogues have shown 4,5 the influence of certain structural details of their immunosuppressive activity as follows: 1) fatty acyl chain length at the ceramide moiety is an important factor for the activity 2) hydroxylation of the fatty acyl group decreases immunosuppressive activity 3) substitution of an S-glycosidic linkage for an Oglycosidic linkage in the sialic acid linkage does not alter its activity and 4) modification of the sialic acid structure variably influence the activity, since KDN (3-deoxy-Dglycero-D-galacto-2-nonulopyranosonic acid)-GM3 and -GM4 analogues retain potent activity, while other modifications such as 8-epi-GM3 and 9-deoxy-GM3 reduce immunosuppressive activity. In view of these facts, we describe here the synthesis of GM3 and KDN-GM3 each containing three different fatty-acyl groups hexanoyl, decanoyl, or hexadecanoyl at the ceramide moiety in order to clarify the relationship between fatty acyl chain length and immunosuppressive activity.


RESULTS AND DISCUSSION

For the synthesis of the desired ganglioside GM3 and KDN-GM3, we employed the intermediates (1 and 2) developed for the synthesis of GM3⁶ and KDN-GM3.⁷ Selective reduction^{6,8} of the azido group in compounds 1 and 2 with H₂S in 5:1 pyridine-water for 48 h at 0 °C gave the corresponding amines 3 and 4, which on condensation with hexanoic, decanoic, and hexadecanoic acids, respectively, using 1ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (WSC) in CH₂Cl₂, gave the corresponding GM3 and KDN-GM3 derivatives 5~10 in high yields. Finally, *O*deacylation of 5~10 with sodium methoxide in methanol, and subsequent saponification of the methyl ester group, yielded almost quantitatively the

11, 12, 13 R = NHAc, n = 4, 8, 14
14, 15, 16 R = OH, n = 4, 8, 14

corresponding ganglioside GM3 (11~13) and KDN-GM3 (14~16) containing different fatty acyl groups at the ceramide moiety.

On the other hand, selective reduction of the azido group with H₂S in 17 prepared from 1 by O-deacylation and saponification of the methyl ester group, gave lyso-GM₃ (18) in 80% yield, in which no acyl group was substituted at the sphingosine moiety.

EXPERIMENTAL

General Procedures. Specific rotations were determined with a Union PM-201 polarimeter at 25 °C. ¹H NMR spectra were recorded with a JEOL JNM-GX 270 spectrometer. Preparative chromatography was performed on silica gel (Wako Chemical Co., 200 mesh) with the solvent systems specified. Concentrations were conducted *in vacuo*.

O-(Methyl 5-Acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-Dglycero - α - D - galacto - 2 - nonulopyranosylonate) - $(2 \rightarrow 3)$ - O - (2,4 - di - O acetyl-6-O-benzoyl- β -D-galactopyranosyl)- $(1 \rightarrow 4)$ -O-(3-O-acetyl-2,6-di-O-benzoyl- β -D-glucopyranosyl)- $(1 \rightarrow 1)$ -(2S, 3R, 4E)-3-O-benzoyl-2-hexanamido-4-octadecene-1,3-diol (5). Hydrogen sulfide was bubbled through a stirred solution of 1⁶ (100 mg, 0.06 mmol) in aq 83% pyridine (6 mL) for 48 h at 0 °C. The reaction was monitored by TLC. After completion of the reaction, the mixture was concentrated, and the residue was stirred with hexanoic acid (21 mg, 0.18 mmol) and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (WSC) (57 mg, 0.3 mmol) in dry CH₂Cl₂ (5 mL) overnight at room temperature. Dichloromethane (30 mL) was added, and the mixture was washed with water, dried (Na2SO4) and concentrated. Column chromatography (60:1 CH2Cl2-MeOH) of the residue on silica gel (30 g) gave 5 (85 mg, 82%) as an amorphous mass: $[\alpha]_D$ +7.1° (c 0.7, CHCl₃); ¹H NMR (CDCl₃) δ 0.85 (t, 6H, 2*Me*CH₂), 1.24 (s, 32H, 16CH₂), 1.84~2.18 (8s, 24H, 7AcO, AcN), 2.57 (dd, 1H, $J_{gem} = 12.6 \text{ Hz}$, $J_{3eq,4} = 4.4 \text{ Hz}$, H-3beq), 3.70 (s, 3H, MeO), 4.58 (dd, 1H, $J_{2,3} = 10.3$ Hz, $J_{3,4} = 3.3$ Hz, H-3b), 4.61 (d, 1H, $J_{1,2} = 7.7$ Hz, H-1a), 4.84 (d, 1H, $J_{1,2} = 8.1$ Hz, H-1b), 5.02 (d, 1H, H-4b), 5.15 (dd, 1H, H-2b), 5.19 (dd, 1H, $J_{2,3} = 8.0$ Hz, H-2a), 5.38 (dd, 1H, $J_{6,7} = 2.9$ Hz, $J_{7,8} = 8.8$ Hz, H-7c), 5.47 (br t, 1H, $J_{3,4} = 9.7$ Hz, H-3a), 5.65 (d, 1H, $J_{5,NH} = 9.0$ Hz, NH), 5.76 (m, 1H, H-5 of sphingosine), and 7.25-8.06 (m, 20H, 4Ph).

Anal. Calcd for C90H116N2O32 (1737.0): C, 62.21; H, 6.73; N, 1.61. Found: C, 62.33; H, 6.81; N, 1.56.

O-(Methyl 5-Acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-Dglycero - α - D - galacto - 2 - nonulopyranosylonate) - $(2 \rightarrow 3)$ - O - (2, 4 - di - O - (2, 4acetyl-6-O-benzoyl- β -D-galactopyranosyl)- $(1 \rightarrow 4)$ -O-(3-O-acetyl-2,6di -O -benzoyl - β -D -glucopyranosyl) - $(1 \rightarrow 1)$ -(2S, 3R, 4E)-3-O -benzoyl -2decanamido-4-octadecene-1,3-diol (6). The azido group in 1 (100 mg, 0.06 mmol) was converted into amine as described for 5, which was then condensed with decanoic acid (31 mg, 0.18 mmol) in the presence of WSC (57 mg, 0.3 mmol), to give 6 (85 mg, 79%) as an amorphous mass: $[\alpha]_D$ +6.5° (c 0.8, CHCl₃); ¹H NMR $(CDC1_3) \delta 0.89$ (t, 6H, 2MeCH₂), 1.28 (s, 40H, 20CH₂), 1.75 (t, 1H, J_{gem} = $J_{3ax,4} = 12.5$ Hz, H-3cax), 1.85~2.27 (8s, 24H, 7AcO, AcN), 2.67 (dd, 1H, J_{3eq,4}) = 4.9 Hz, H-3ceq), 3.67 (dd, 1H, $J_{5,6}$ = 10.4 Hz, $J_{6,7}$ = 3.6 Hz, H-6c), 3.78 (s, 3H, MeO), 4.67 (dd, 1H, $J_{2,3} = 9.7$ Hz, $J_{3,4} = 3.1$ Hz, H-3b), 4.70 (d, 1H, $J_{1,2} = 3.1$ Hz, H-3b), 4.70 (d, 1H, J_{1,2} = 3.1 Hz, H_3b), 4.70 (d, 1H, J_{1,2} = 3.1 7.5 Hz, H-1a), 4.93 (d, 1H, $J_{1,2} = 7.9$ Hz, H-1b), 5.02 (d, 1H, H-4b), 5.24 (dd, 1H, H-2b), 5.33 (t, 1H, $J_{2,3} = 7.5$ Hz, H-2a), 5.45 (dd, 1H, $J_{7,8} = 6.8$ Hz, H-7c), 5.58 (br t, 1H, $J_{3,4} = 7.0$ Hz, H-3a), 5.76 (d, 1H, $J_{5,NH} = 9.8$ Hz, NH), 5.84 (m, 1H, H-5 of sphingosine), and 7.34-8.14 (m, 20H, 4Ph).

Anal. Calcd for C94H124N2O32 (1794.0): C, 62.93; H, 6.97; N, 1.56. Found: C, 62.77; H, 6.95; N, 1.49.

O-(Methyl 5-Acetamido-4,7,8,9-tetra-*O*-acetyl-3,5-dideoxy-Dglycero- α -D-galacto-2-nonulopyranosylonate)- $(2 \rightarrow 3)$ -*O*-(2,4-di-*O*acetyl-6-*O*-benzoyl- β -D-galactopyranosyl)- $(1 \rightarrow 4)$ -*O*-(3-*O*-acetyl-2,6-di-*O*-benzoyl- β -D-glucopyranosyl)- $(1 \rightarrow 1)$ -(2S,3R,4E)-3-*O*-benzoyl-2-hexadecanamido-4-octadecene-1,3-diol (7). Reduction of the azido group in 1 (100 mg, 0.06 mmol) and subsequent coupling with hexadecanoic acid (46 mg, 0.18 mmol) using WSC (57 mg, 0.3 mmol), according to the procedure described for 5, gave compound 7 (95.5 mg, 85%) as an amorphous mass: $[\alpha]_D$ +6.2° (*c* 1.9, CHCl₃); ¹H NMR (CDCl₃) δ 0.96 (t, 6H, 2*Me*CH₂), 1.30 (s, 52H, 26CH₂), 1.91-2.26 (8s, 24H, 7AcO, AcN), 1.78 (t, 1H, $J_{gem} = J_{3ax,4} = 12.5$ Hz, H-3cax), 2.64 (dd, 1H, $J_{3eq,4} = 4.4$ Hz, H-3ceq), 3.67 (dd, 1H, $J_{5,6} = 10.8$ Hz, $J_{6,7} = 2.7$ Hz, H-6c), 3.77 (s, 3H, MeO), 4.68 (dd, 1H, $J_{2,3} = 9.9$ Hz, $J_{3,4} = 3.5$ Hz, H-3b), 4.70 (d, 1H, $J_{1,2} = 7.7$ Hz, H-1a), 4.93 (d, 1H, $J_{1,2} = 7.9$ Hz, H-1b), 5.07 (d, 1H, H-4b), 5.24 (dd, 1H, H-2b), 5.33 (dd, 1H, $J_{2,3} = 8.1$ Hz, H-2a), 5.45 (dd, 1H, $J_{7,8} = 7.1$ Hz, H-7), 5.57 (dd, 1H, $J_{3,4} = 7.0$ Hz, H-3a), 5.85 (m, 1H, H-5 of sphingosine), and 7.36-8.14 (m, 20H, 4Ph).

Anal. Calcd for C100H136N2O32 (1878.2): C, 63.95; H, 7.30; N, 1.49. Found: C, 63.72; H, 7.45; N, 1.50.

O-(Methyl 4,5,7,8,9-Penta - *O* - acetyl-3 - deoxy - D-glycero - α - Dgalacto - 2 - nonulopyranosylonate) - (2 → 3) - *O* - (2,4 - di - *O* - acetyl-6-*O*benzoyl-β-D-galactopyranosyl)-(1 → 4)-*O*-(3-*O*-acetyl-2,6-di-*O*-benzoylβ-D-glucopyranosyl)-(1→1)-(2*S*,3*R*,4*E*)-3-*O*-benzoyl-2-hexanamido-4octadecene-1,3-diol (8). Reduction of the azido group in 2⁷ (111.6 mg, 0.07 mmol) and subsequent coupling with hexanoic acid (16.5 mg, 0.14 mmol) using WSC (27 mg), according to the procedure described for 5, gave compound 8 (86 mg, 70%) as an amorphous mass: $[α]_D$ +11.5° (*c* 0.4, CHCl₃); ¹H NMR (CDCl₃) δ 0.86 (t, 6H, 2*Me*CH₂), 1.25 (s, 32H, 16CH₂), 1.96-2.15 (8s, 24H, 8AcO), 2.63 (dd, 1H, J_{gem} = 12.8 Hz, J_{3eq},4 = 4.3 Hz, H-3ceq), 3.74 (s, 3H, MeO), 4.60 (d, 1H, J_{1,2} = 7.7 Hz, H-1a), 5.19 (dd, 1H, J_{2,3} = 9.8 Hz, H-2a), 5.57 (m, 1H, H-8c), 5.78 (dt, 1H, J_{4,5} = 14.8 Hz, J_{5.6} = J_{5.6}' = 6.6 Hz, H-5 of sphingosine), and 7.25-8.06 (m, 20H, 4Ph).

Anal. Calcd for C90H115NO33 (1738.9): C, 62.17; H, 6.67; N, 0.81. Found: C, 62.03; H, 6.85; N, 0.97.

O-(Methyl 4,5,7,8,9-Penta - *O*-acetyl-3-deoxy-D-glycero- α -Dgalacto-2-nonulopyranosylonate)- $(2 \rightarrow 3)$ -*O*-(2,4-di-*O*-acetyl-6-*O*benzoyl- β -D-galactopyranosyl)- $(1 \rightarrow 4)$ -*O*-(3-*O*-acetyl-2,6-di-*O*-benzoyl- β -D-glucopyranosyl)- $(1\rightarrow 1)$ -(2S,3R,4E)-3-*O*-benzoyl-2-decanamido-4octadecene-1,3-diol (9). Reduction of the azido group in 2 (102 mg, 0.061 mmol) and subsequent coupling with decanoic acid (21 mg, 0.12 mmol) using WSC (23.5 mg), according to the procedure described for 5, gave compound 9 (76 mg, 69%) as an amorphous mass: $[\alpha]_D$ +9.2° (*c* 0.3, CHCl3); ¹H NMR (CDCl3) δ 0.89 (t, 6H, 2MeCH₂), 1.26 (s, 40H, 20CH₂), 1.87-2.21 (8s, 24H, 8AcO), 2.65 (dd, 1H, $J_{gem} = 12.5 \text{ Hz}, J_{3eq,4} = 4.5 \text{ Hz}, \text{H-3ceq}), 3.78 (s, 3H, MeO), 4.63 (d, 1H, J_{1,2} = 7.7 \text{ Hz}, \text{H-1a}), 4.91 (d, 1H, J_{1,2} = 7.9 \text{ Hz}, \text{H-1b}), 5.22 (dd, 1H, J_{2,3} = 9.1 \text{ Hz}, \text{H-2a}), 5.45 (dd, 1H, J_{6,7} = 2.0 \text{ Hz}, J_{7,8} = 7.9 \text{ Hz}, \text{H-7c}), 5.57 (m, 1H, \text{H-8c}), 5.80 (m, 1H, \text{H-5 of sphingosine}), and 7.31~8.09 (m, 20H, 4Ph).$

Anal. Calcd for C94H123NO33 (1795.0): C, 62.90; H, 6.91; N, 0.78. Found: C, 62.86; H, 7.15; N, 0.83.

O - (Methyl 4,5,7,8,9 - Penta - *O* - acetyl - 3 - deoxy - D - glycero - α - D - galacto - 2 - nonulopyranosylonate) - (2 → 3) - *O* - (2,4 - di - *O* - acetyl - 6- *O* - benzoyl-β-D - galactopyranosyl) - (1 → 4) - *O* - (3-*O* - acetyl - 2,6-di - *O* - benzoyl-β - D - glucopyranosyl) - (1 → 1) - (2S,3R,4E) - 3-*O* - benzoyl - 2 - hexadecanamido-4 - octadecene - 1,3-diol (10). Reduction of the azido group in 2 (182.5 mg, 0.11 mmol) and subsequent coupling with hexadecanoic acid (56 mg, 0.22 mmol) using WSC (42 mg, 0.22 mmol), according to the procedure for 5, gave compound 10 (162 mg, 79%) as an amorphous mass: $[α]_D$ +10.1° (*c* 0.5, CHCl₃); ¹H NMR (CDCl₃) δ 0.88 (t, 6H, 2*Me*CH₂), 1.26 (s, 52H, 26CH₂), 1.97~2.17 (8s, 24H, 8AcO), 2.64 (dd, 1H, J_{gem} = 12.7 Hz, H-3ceq), 3.74 (s, 3H, MeO), 4.63 (d, 1H, J_{1,2} = 7.9 Hz, H-1a), 4.90 (d, 1H, J_{1,2} = 8.2 Hz, H-1b), 5.22 (dd, 1H, J_{2,3} = 9.3 Hz, H-2b), 5.57 (m, 1H, H-8c), 5.78 (dt, 1H, J_{4,5} = 15.2 Hz, J_{5,6} = J_{5,6}' = 6.6 Hz, H-5 of sphingosine), and 7.25-8.07 (m, 20H, 4Ph).

Anal. Calcd for C100H135NO33 (1879.2): C, 63.92; H, 7.24; N, 0.75. Found: C, 64.11; H, 7.20; N, 0.81.

O-(5-Acetamido-3,5-dideoxy-D-glycero- α -D-galacto-2-nonulopyranosylonic acid)-(2 \rightarrow 3)-O- β -D-galactopyranosyl-(1 \rightarrow 4)-O- β -D-glucopyranosyl-(1 \rightarrow 1)-(2S,3R,4E)-2-hexanamido-4-octadecene-1,3-diol (11). To a solution of 5 (85.1 mg, 0.05 mmol) in MeOH (5 mL) was added NaOMe (20 mg) and the mixture was stirred overnight at 40 °C; the course of the reaction was monitored by TLC. Water (0.2 mL) was added to the mixture, and this was stirred overnight at room temperature and then treated with Amberlite IR-120 (H⁺) resin and filtered. The resin was washed with 1:1 CHCl₃-MeOH, and the combined filtrate and washings was concentrated. Column chromatography (1:1 CHCl₃-MeOH) of the residue on Sephadex LH-20 (20 g) gave 11 (48.6 mg, 98%) as an amorphous mass: $[\alpha]_D$ +6.5° $(c \ 0.5, 1:1 \ CHCl_3-MeOH)$; ¹H NMR (1:2 CDCl_3-CD_3OD) $\delta \ 0.99$ (t, 6H, 2*Me*CH₂), 1.38 (s, 32H, 16CH₂), 2.10 (s, 3H, AcN), 2.27 (br t, 1H, H-3ceq), 4.15 (d, 1H, J_{1,2} = 7.3 Hz, H-1a), 4.40 (d, 1H, J_{1,2} = 7.7 Hz, H-1b), and 5.74 (m, 1H, H-5 of sphingosine).

Anal. Calcd for C47H84N2O21 (1013.2): C, 55.72; H, 8.36; N, 2.77. Found: C, 55.77; H, 8.49; N, 2.70.

O-(5-Acetamido-3,5-dideoxy-D-glycero-α-D-galacto-2-nonulopyranosylonic acid)-(2-→3)-*O*-β-D-galactopyranosyl-(1→4)-*O*-β-D-glucopyranosyl-(1→1)-(2*S*,3*R*,4*E*)-2-decanamido-4-octadecene-1,3-diol (12). The *O*-acyl and methyl ester groups in 6 (40 mg, 0.02 mmol) were removed, as described for 11, to give compound 12 (22.4 mg, 93%) as an amorphous mass: $[\alpha]_D$ +4.5° (*c* 0.5, 1:1 CHCl₃-MeOH); ¹H NMR (1:2 CDCl₃-CD₃OD) δ 0.99 (t, 6H, 2*Me*CH₂), 1.39 (s, 40H, 20CH₂), 1.68 (br t, 1H, H-3cax), 2.11 (s, 3H, AcN), 2.27 (br dd, 1H, H-3ceq), 3.99 (d, 1H, J_{1,2} = 7.3 Hz, H-1a), 4.40 (d, 1H, J_{1,2} = 7.7 Hz, H-1b), and 5.66 (m, 1H, H-5 of sphingosine).

Anal. Calcd for C51H92N2O21 (1069.3): C, 57.29; H, 8.67; N, 2.62. Found: C, 57.13; H, 8.90; N, 2.62.

O-(5-Acetamido-3,5-dideoxy-D-glycero-α-D-galacto-2-nonulopyranosylonic acid)-(2→3)-*O*-β-D-galactopyranosyl-(1→4)-*O*-β-D-glucopyranosyl-(1→1)-(2*S*,3*R*,4*E*)-2-hexadecanamido-4-octadecene-1,3-diol (13). The *O*-acyl and methyl ester groups in 7 (95.4 mg, 0.05 mmol) were removed, as described for 11, to give compound 13 (59 mg, quantitative) as an amorphous mass: $[\alpha]_D$ +1.5° (*c* 1.2, 1:1 CHCl3-MeOH); ¹H NMR (1:2 CDCl3-CD3OD) δ 0.89 (t, 6H, 2*Me*CH₂), 1.24 (s, 52H, 26CH₂), 1.67 (br t, 1H, H-3cax), 1.91 (s, 3H, AcN), 2.07 (br dd, 1H, H-3ceq), 3.95 (d, 1H, J_{1,2} = 7.9 Hz, H-1a), 4.20 (d, 1H, J_{1,2} = 7.7 Hz, H-1b), and 5.30~5.61 (m, 2H, H-4,5 of sphingosine).

Anal. Calcd for C₅₇H₁₀₄N₂O₂₁ (1153.5): C, 59.35; H, 9.09; N, 2.43. Found: C, 59.20; H, 9.18; N, 2.55.

 $O \cdot (3 \cdot \text{Deoxy} \cdot \text{D} \cdot glycero \cdot \alpha \cdot \text{D} \cdot galacto \cdot 2 \cdot \text{nonulopyranosylonic} acid) \cdot (2 \rightarrow 3) \cdot O \cdot \beta \cdot \text{D} \cdot galactopyranosyl \cdot (1 \rightarrow 4) \cdot O \cdot \beta \cdot \text{D} \cdot glucopyranosyl \cdot (1 \rightarrow 1) \cdot (2S, 3R, 4E) \cdot 2 \cdot \text{hexanamido} \cdot 4 \cdot \text{octadecene} \cdot 1, 3 \cdot \text{diol}$ (14). The $O \cdot \text{acyl}$ and

methyl ester groups in 8 (60.5 mg, 0.035 mmol) were removed, as described for 11, to give compound 14 (34.3 mg, quantitative) as an amorphous mass: $[\alpha]_D -7.1^\circ$ (c 0.8, 1:1 CHCl₃-MeOH); ¹H NMR [100:1 (CD₃)₂SO-H₂O] δ 0.88 (t, 6H, 2*Me*CH₂), 1.24 (s, 32H, 16CH₂), 2.06 (br t, 1H, H-3*cax*), 2.43 (br dd, 1H, H-3*ceq*), 4.16 (d, 1H, J_{1,2} = 7.5 Hz, H-1a), 4.24 (d, 1H, J_{1,2} = 7.6 Hz, H-1b), 5.36 (dd, 1H, J_{3,4} = 6.8 Hz, J_{4,5} = 14.8 Hz, H-4 of sphingosine), and 5.57 (dt, 1H, J_{5,6} = J_{5,6}' = 6.1 Hz, H-5 of sphingosine).

Anal. Calcd for C45H81NO21 (972.2): C, 55.60; H, 8.40; N, 1.44. Found: C, 55.43; H, 8.59; N, 1.41.

 $O \cdot (3 - \text{Deoxy} \cdot \text{D} \cdot glycero \cdot \alpha - \text{D} \cdot galacto \cdot 2 - \text{nonulopyranosylonic acid})$ (2 \rightarrow 3)- $O \cdot \beta - \text{D} \cdot \text{galactopyranosyl} \cdot (1 \rightarrow 4) - O \cdot \beta - \text{D} \cdot \text{glucopyranosyl} \cdot (1 \rightarrow 1)$ -(2S,3R,4E)-2-decanamido-4-octadecene-1,3-diol (15). O-Deacylation and saponification of 9 (58 mg, 0.032 mmol), as described for 11, yielded amorphous 15 (37.5 mg, quantitative): $[\alpha]_D \cdot 7.9^\circ$ (c 0.8, 1:1 CHCl3-MeOH); ¹H NMR [100:1 (CD3)2SO-H2O] δ 0.87 (t, 6H, 2MeCH2), 1.24 (s, 40H, 20CH2), 2.05 (br t, 1H, H-3cax), 2.63 (br dd, 1H, H-3ceq), 4.16 (d, 1H, J_{1,2} = 7.6 Hz, H-1a), 4.20 (d, 1H, J_{1,2} = 7.9 Hz, H-1b), 5.35 (dd, 1H, J_{3,4} = 6.0 Hz, J_{4,5} = 15.4 Hz, H-4 of sphingosine), and 5.56 (dt, 1H, J_{5,6} = J_{5,6}' = 6.1 Hz, H-5 of sphingosine).

Anal. Calcd for C49H89NO₂₁ (1028.3): C, 57.23; H, 8.72; N, 1.36. Found: C, 57.05; H, 8.93; N, 1.35.

 $O \cdot (3 \cdot \text{Deoxy} \cdot \text{D} \cdot glycero \cdot \alpha \cdot \text{D} \cdot galacto \cdot 2 \cdot \text{nonulopyranosylonic} acid)$ (2 \rightarrow 3) $\cdot O \cdot \beta \cdot \text{D} \cdot \text{galactopyranosyl} \cdot (1 \rightarrow 4) \cdot O \cdot \beta \cdot \text{D} \cdot \text{glucopyranosyl} \cdot (1 \rightarrow 1) \cdot (2S, 3R, 4E) \cdot 2 \cdot \text{hexadecanamido} \cdot 4 \cdot \text{octadecene} \cdot 1, 3 \cdot \text{diol}$ (16). $O \cdot \text{Deacylation}$ and saponification of 10 (70.6 mg, 0.038 mmol), as described for 11, yielded amorphous 16 (39.8 mg, 94%): $[\alpha]_D \cdot 7.3^\circ$ (c 0.8, 1:1 CHCl3-MeOH); ¹H NMR [100:1 (CD3)2SO-H2O] δ 0.86 (t, 6H, 2MeCH2), 1.23 (s, 52H, 26CH2), 2.03 (br t, 1H, H-3cax), 2.53 (br dd, 1H, H-3ceq), 4.16 (d, 1H, J_{1,2} = 7.9 Hz, H-1a), 4.23 (d, 1H, J_{1,2} = 7.5 Hz, H-2b), 5.35 (dd, 1H, J_{3,4} = 6.1 Hz, J_{4,5} = 15.2 Hz, H-4 of sphingosine), and 5.54 (dt, 1H, J_{5,6} = J_{5,6}' = 6.4 Hz, H-5 of sphingosine).

Anal. Calcd for C55H101NO21 (1112.4): C, 59.39; H, 9.15; N, 1.26. Found: C, 59.42; H, 9.33; N, 1.24.

O-(5-Acetamido-3,5-dideoxy-D-glycero-α-D-galacto-2-nonulopyranosylonic acid)-(2→3)-*O*-β-D-galactopyranosyl-(1→4)-*O*-β-D-glucopyranosyl-(1→1)-(2S,3R,4E)-2-amino-4-octadecene-1,3-diol (lyso-GM3) (18). Hydrogen sulfide was bubbled through a stirred solution of 17, prepared from 1 by *O*-deacylation and subsequent de-esterification (49.5 mg, 0.06 mmol) in aq 83% pyridine (12 mL) for 3 days at room temperature. The reaction was monitored by TLC. After completion of the reaction, the mixture was concentrated to a syrup which was chromatographed on a column of Sephadex LH-20 (20 g) with 1:1 CHCl3-MeOH to give 18 (39 g, 80%) as an amorphous mass: $[\alpha]_D$ -4.5° (*c* 0.5, 1:1 CHCl3-MeOH); ¹H NMR (1:1 CDCl3-CD3OD) δ 0.86 (t, 3H, 2MeCH2), 1.25 (s, 22H, 11CH2), 1.91 (s, 3H, AcN), 2.78 (br dd, 1H, H-3ceq), 4.20 (d, 1H, J_{1,2} = 7.5 Hz, H-1a), 4.25 (d, 1H, J_{1,2} = 7.9 Hz, H-1b), 5.44 (dd, 1H, J_{3,4} = 6.0 Hz, J_{4,5} = 15.2 Hz, H-4 of sphingosine), and 5.73 (dt, 1H, J_{5,6} = J_{5,6}' = 6.6 Hz, H-5 of sphingosine).

Anal. Calcd for C41H74N2O20 (915.0): C, 53.82; H, 8.15; N, 2.62. Found: C, 53.61; H, 8.20; N, 2.56.

ACKNOWLEDGMENT

This work was supported in part by a Grant-in-Aid (No. 07273226 and No. 05274102) for Scientific Research on Priority Areas from the Ministry of Education, Science and Culture of Japan.

REFERENCES

- 1. A. Hasegawa, N. Suzuki, H. Ishida and M. Kiso, J. Carbohydr. Chem., (preceding paper) references cited therein.
- 2. S. Ladisch, B. Gillard, C. Wong and L. Ulsh, Cancer Res., 43, 3808 (1983).
- 3. S. Ladisch, R. Li and E. Olson, Proc. Natl. Acad. Sci. USA, 91, 1974 (1994).
- 4. S. Ladisch, A. Hasegawa, R. Li and M. Kiso, Biochem. Biophys. Res. Commun., 203, 1102 (1994).
- 5. S. Ladisch, A. Hasegawa, R. Li and M. Kiso, Biochemistry, 34, 1197 (1995).
- 6. T. Murase, H. Ishida, M. Kiso and A. Hasegawa, Carbohydr. Res., 188, 71 (1989).
- 7. T. Terada, M. Kiso and A. Hasegawa, J. Carbohydr. Chem., 12, 425 (1993).
- 8. T. Adachi, Y. Yamada, I. Inoue and M. Saneyoshi, Synthesis, 45 (1977).