33. Photolyse von 3-Methyl-2,1-benzisoxazol (3-Methylanthranil) und 2-Azido-acetophenon in Gegenwart von Schwefelsäure und Benzolderivaten

von Thomas Doppler¹) und Hans Schmid^{†2})

Organisch-chemisches Institut der Universität Zürich, Rämistrasse 76, CH-8001 Zürich

und Hans-Jürgen Hansen³)

Institut de chimie organique de l'Université de Fribourg, Pérolles, CH-1705 Fribourg

(4.X.78)

Photolysis of 3-Methyl-2,1-benzisoxazole (3-Methylanthranil) and 2-Azido-acetophenone in the Presence of Sulfuric Acid and Benzene Derivatives

Summary

Irradiation of 3-methylanthranil (1) in acetonitrile in the presence of sulfuric acid and benzene, toluene, p-xylene, mesitylene or anisole with a mercury highpressure lamp through a pyrex filter yields beside varying amounts of 2-aminoacetophenone (3) and 2-amino-5-hydroxy- (4a) and 2-amino-3-hydroxy-acetophenone (4b) the corresponding diphenylamine derivatives 5 (see *Table 1*). In the case of toluene and anisole mixtures of the corresponding ortho- and parasubstituted isomers (5b, 5d or 5g, 5i respectively), but no meta-substituted isomers (5c or 5h) are obtained. In addition to these products, the irradiation of 1 in the presence of anisole yields also 2-amino-5-(4'-methoxyphenyl)-acetophenone (7), 2-amino-3-(4'-methoxyphenyl)-acetophenone (8) and 2-methoxy-9-methyl-acridine (6; see Scheme 1). The latter product is also formed thermally by acid catalysis from the diphenylamine derivative 5i. Irradiation of 2-azido-acetophenone(2) in acetonitrile solution in the presence of sulfuric acid and benzene leads to the formation of 1, 3, 4a, 4b, 5a and 9 (see Table 2). Compounds 3, 4a, 4b and 5a are also obtained after acid catalyzed decomposition of 2 in the presence of benzene. Thus, it is concluded that irradiation of 1 or 2 in the presence of sulfuric acid yields 2-acetyl-phenylnitrenium ions 10 in the singlet ground state which will undergo electrophilic substitution of the aromatic compounds, perhaps via the π -complex 11 (see Scheme 2).

In einer vorhergehenden Mitteilung [1] hatten wir photochemische Versuche mit Anthranilen in 96proz. Schwefelsäure und säurekatalysierte Zersetzungen

¹) Teil der Dissertation von *Th.D.*, Universität Zürich, 1974; gegenwärtige Adresse: Kantonsschule Baden, Abteilung Chemie, Seminarstrasse 3, CH-5400 Baden.

²) Gilt als 59. Mitteilung über Photoreaktionen; 58. Mitt. siehe [1].

³) Autor für Korrespondenz.

entsprechender 2-Azido-acylbenzole beschrieben, deren Ergebnisse sich im Einklang befanden mit der Annahme, dass Anthranilium-Ionen bei elektronischer Anregung unter Spaltung der *N*, *O*-Bindung 2-Acyl-phenylnitrenium-Ionen im Singulett-Grundzustand ergeben. In bekannter Weise⁴) reagieren diese Nitrenium-Ionen mit Nucleophilen wie dem Hydrogensulfat-Ion bevorzugt in *para*-Stellung zum Nitrenium-Stickstoffatom unter Bildung von 5-substituierten 2-Amino-acylbenzolen (vgl. auch [3-5]). Es stellte sich dabei die Frage, ob die Reaktivität des Nitrenium-Stickstoffatoms der 2-Acyl-phenylnitrenium-Ionen auch für aromatische Substitutionsreaktionen herangezogen werden kann⁵), denn schon *Bamberger* hatte bei den säurekatalysierten Reaktionen von Phenylhydroxylaminen und der entsprechenden Azido-benzole in Gegenwart von Phenol und Anilin Substitutionsreaktionen an diesen Substraten beobachtet (vgl. die in [2] zitierte Literatur)⁶)⁷).

Wir untersuchten deshalb die Photolyse von 3-Methylanthranil (1) in Gegenwart von Schwefelsäure und aromatischen Verbindungen in Acetonitril. Die Bestrahlung dieser Gemische erfolgte dabei durch 2 mm starkes Pyrexglas, welches Licht erst ab $\lambda \ge 285$ nm durchliess. Die molaren Verhältnisse 1/Schwefelsäure/ aromatische Verbindung (1: (2-4): (20-135)) in Acetonitril (c(1)=(3-4) · 10⁻² mol/l) waren aufgrund von Absorptionsmessungen so gewählt, dass weniger als 1‰ des photochemisch aktiven, den Pyrexfilter passierenden Lichtes von den aromatischen Verbindungen (vgl. *Tab. 1*) aufgenommen wurde. Das gleiche gilt für Experimente mit 2-Azido-acetophenon (2), die zu Vergleichszwecken ausgeführt wurden.

Ergebnisse. – Die ausgeführten Experimente sind in den Tabellen 1 und 2 zusammengestellt.

Aus allen Bestrahlungen von 1 in Gegenwart von Schwefelsäure und den aromatischen Verbindungen wurden 20-30% nicht reagiertes 1 zurückerhalten. Die unvollständige Photoumsetzung wurde offenbar durch die Bildung stark fluoreszierender Nebenprodukte (vermutlich Acridinderivate, vgl. *Schema 1*) verursacht, welche die Photoreaktion von 1 löschen. Bei der Photolyse von 1 wurden

⁴) Vgl. *Bambergers* Arbeiten zur säurekatalysierten Reaktion von Arylhydroxylaminen und Azidoaromaten (z. B. [2]).

⁵) «Harte» Nucleophile X(X=HSO⁴₄, H₂O, ROH, Cl[⊖]) scheinen mit Phenylnitrenium-Ionen unter direkter C, X-Verknüpfung zu reagieren, wenngleich eine aufgrund der Reaktionsbedingungen reversible N, X-Verknüpfung nicht auszuschliessen ist (vgl. auch [6]).

⁶) Beispielsweise lieferte die Umsetzung von 4-Methyl-phenylhydroxylamin oder 4-Azido-toluol mit Phenol bzw. Anilin in Gegenwart von Schwefelsäure u.a. 4-Hydroxy- bzw. 4-Amino-4'-methyldiphenylamin. Ähnliche Ergebnisse wurden mit Phenylhydroxylamin und Azido-benzol erzielt. Doch wurden hierbei zusätzlich noch 4-Amino-4'-hydroxy- bzw. 4,4'-Diaminobiphenyl erhalten (vgl. die in [2] zitierte Literatur).

⁷) Bezüglich der Umsetzung von Phenylhydroxylamin und Arylaziden in aromatischen Kohlenwasserstoffen in Gegenwart von Aluminiumchlorid vgl. [7] [8]. Kürzlich wurde auch die photochemische Zersetzung von Arylaziden in Gegenwart von aromatischen Verbindungen und Trifluoressigsäure beschrieben [9].

Ta	belle 1. Phi	otolyse von	3-Methylan	nthranil (1) in Ge	genwart von	Schwefel	säure unc	ł aromatisc.	hen Verl	indungen	$(Ar-H)^{a}$	
		Ł	CH3 0 + Ar-H	2	PH C	ť ť		ŕ ď		5 0		
			L	14/CH3CN	_ ب		<u>}</u> -	'NH2	\leq	1Ar		
		~		9	ļ	4a	Ч	4b	2			
Ar-H	Konzei	ntrationen	(mol/l)	Molares	Bestrah-	Isolierte	Verbind	ungen (%)	(Smp.
	Ar-H	H_2SO_4 (× 10 ⁻²)	$(\times 10^{-2})$	<u>Verhältnis</u> <u>Ar-H/H₂SO₄/1</u>	lungsdaue (Std.)	r 1°)	e	4a	4b	N.	(Nr.) ^d)	5 (°C)
	1	59	15	-/4 /1	0.33	50	ſ	20	2.5	1		I
Benzol	4,5	17	4	100/4 /1	7	20	11	30	5	14	(5a)	63,5-64,5°)
Benzol	4,5	I	4	100/- /1	7	(j	ŀ	I	ŧ	I	、 , 1	
Toluol ^g)	3,5	6,4	3,3	100/2 /1	ñ	39	7	}	1	4,3	(5b) ^h)	Į
								20		9.7	(5d)	1
<i>p</i> -Xylol	4,2	6,5	3,2	130/2 /1	2,25	25	12	16	2	8	(5e)	80,5-81,5 ⁱ)
Mesitylen	5,0	6,9	3,7	135/2 /1	4	24	12	13	3,5	7	(5f)	$128,0-128,5^{i})^{k}$
1,4-Difluorbenzol	3,2	7,5	4,1	80/2 /1	ŝ	31	ŝ	22	3,5	I	. 1	I
Anisol	0,7	15	3,6	20/4 /1	e	25	0	15	4	3,5	(5g) ¹)	69,0-69,5
										6,6	(5i)	67,2-68,2
 ^a) Bestrahlungen in unverändert zurü im Vacuum einge Nichtphenolteil u. 	Acetonitril ckerhalten. engt und a nd dann du	mit einer Bei der / ınschliesser urch Chron	Quecksilbe Aufarbeitur nd mit Essi aatographie	rr-Hochdrucklan ag wurden die 1 igester ausgeschi c (siehe exper. Te	npe in Pyrex Lösungen au littelt. Die T sil).	gefässen. uf Eis ge frennung	Bei ents gossen, 1 der kor	prechende nit Natriu nplexen G	n Dunk mhydrog iemische	elversuch gencarbor erfolgte	en wurden aat im Übe zunächst	die Reaktanden erschuss versetzt, in Phenol- und
c) Praparative Auso c) Die Bildung von ?	spuren fluo	glicn einge reszierend	setztem 1. er Produkte	e verhinderte die	vollständige	e Umsetzı	ng von 1					
d) Substituentenschl	üssel für	Ar≡ Č], in 5: ₅	a: nil; b: CH	₃ -C(2'); c	: CH ₃ -C	(3'); d: (CH ₃ -C(4')	; e: CH	3-C(2′) 1	und –C(5')	; f: CH ₃ -C(2'),
 -C(4') und -C(6 ^e) Vergleich der IR ^f) Im DC. wurde hai ^g) Bei der Bestrahlur); g: CH₃O Spektren u uptsächlich ug in Quarz)-C(2'); h nd des Mi: 1 beobact gefässen w	: CH ₃ OC sch-Smp. m atet sowie in urden die g	(3'); i: CH ₃ O-C iti authentischern n geringen Meng gleichen Ergebni	((4'). n Material [1 gen ein Prod sse erzielt.	0]. ukt. bei d	em es sic	h um ein A	zepinde	rivat geha	ındelt habe	n könnte (Rf!).
^h) Es wurde 14% ein tionsprodukt 5c.	es Gemisch das auf un	ies aus 5b i abhängige	und 5d isoli m Wege sv	iert, das laut gas- vnthetisiert word	-chromatogr len war [10]	aphischer liess sich	Analyse	e aus 31% achweisen (5b und Nachwe	69% 5d b	estand. Da	s meta-Substitu- in bezug auf 5b
und 5d).		0	, 0								0	מ
 ¹) Übereinstimmung ^k) Kristallmodifikati 	g in den ¹ H. onsumwand	-NMR uı dlung im B	nd IRSpel tereich von	ktren sowie Smp 120-127°.	. mit Angab	en in [10]						
¹) Es wurden noch d	rei weitere	Produkte i	soliert (sieh	ne Schema I).								

Reaktand	Reaktionsart und -dauer (Std.)	Molare Verhältnisse Benzol/H ₂ SO ₄ / Reaktand	Isolierte Verbindungen (%) ^b)							
			1	2	3	4 a	4b	5a	9 ^c)	
Anthranil 1 ^a)	hv, 2	100/4 /1	20	-	11	30	2	14	-	
Azid 2^d)	hv, 4,5	120/4 /1	2	12	2	14	I	8	. 4	
Azid 2 ^e)	Δ	45/72 /1		-	3	6	3	6	f)	

 Tabelle 2. Vergleich der Photolysen von 3-Methylanthranil (1) und 2-Azido-acetophenon (2) sowie der säurekatalysierten Zersetzung von 2 in Gegenwart von Schwefelsäure und Benzol (in Acetonitril)

a) Zweiter Versuch aus Tabelle 1.

b) Ausbeuten bezüglich der eingesetzten Menge an Reaktand.

c) 9-Methyl-acridin (9).

d) Gleiche Ergebnisse bei Bestrahlung durch Quarz- und Pyrexglas.

e) Azid 2, in Benzol gelöst, wurde in eiskalte 96proz. Schwefelsäure eingetropft.

f) Im DC. nachgewiesen, aber nicht isoliert.

neben 2-Amino-5- und -3-hydroxy-acetophenon (4a und 4b) (vgl. [1]) die Diphenylaminderivate vom Typ 5 beobachtet. Die Ausbeuten an 5 lagen dabei zwischen 7 und 14%, d.h. sie waren etwa halb so gross wie die von 4a und 4b zusammen. Bei der Umsetzung mit Toluol traten sowohl 2-(o-Toluidino)- (5b) als auch 2-(p-Toluidino)-acetophenon (5d), nicht aber 2-(m-Toluidino)-acetophenon (5c) auf. Mit 1,4-Difluorbenzol wurde kein Diphenylaminderivat gebildet. Bei allen Bestrahlungen in Gegenwart der aromatischen Verbindungen wurde auch das Reduktionsprodukt von 1, nämlich 2-Amino-acetophenon (3) erhalten.

Die Bestrahlung von 1 in Gegenwart von Schwefelsäure und Anisol ergab ein sehr komplexes Gemisch, aus welchem neben den in *Tabelle 1* angeführten Produkten noch die in *Schema 1* angegebenen Verbindungen isoliert wurden.

Die Struktur der Produkte liess sich eindeutig aus ihren spektralen Daten, insbesondere aus ihren ¹H-NMR.-Spektren ableiten (vgl. exper. Teil). Das Acridinderivat 6 fiel durch seine starke Fluoreszenz auf. Sein UV.-Absorptionsspektrum (Äthanol, λ_{max} 256 nm (ε = 141000) sowie eine Serie von Maxima in der Region von 315-390 nm (ε = 2200 bis 8300)) war demjenigen von Acridin selbst [11] sehr ähnlich. Es entstand unter den Reaktionsbedingungen aus dem Diphenylaminderivat 5i⁸).

⁸) Das Acridinderivat 6 wurde auch durch Kochen von 5i in Acetonitril/Schwefelsäure erhalten (vgl. [12]). Unter den gleichen Bedingungen bildeten sich aus 5g nur Spuren einer fluoreszierenden Substanz. Weder 3 noch 4a oder 4b ergaben unter den angewendeten Bestrahlungsbedingungen die Biphenylderivate 7 bzw. 8.

In *Tabelle 2* sind die Ergebnisse der Bestrahlung von 1 in Gegenwart von Schwefelsäure und Benzol denen der photochemischen und thermischen Zersetzung von 2-Azido-acetophenon (2) in Schwefelsäure/Benzol gegenübergestellt. Aus 2 entstanden in beiden Fällen dieselben Produkte wie bei der Bestrahlung von 1. Allerdings war bei den Versuchen mit 2 in verstärktem Masse die Bildung von harzartigen Produkten zu beobachten, so dass nur in qualitativer Hinsicht Übereinstimmung herrscht. Bemerkenswert ist noch, dass nach der Bestrahlung von 2 9-Methyl-acridin (9) in 4% Ausbeute anfiel, während es nach der Bestrahlung von 1 nicht nachgewiesen werden konnte.

Diskussion. - Bei der Photolyse von 1 in Acetonitril in Gegenwart eines 4fach molaren Überschusses an Schwefelsäure entstehen 2-Acetyl-phenylnitrenium-Ionen (10), wie aus der Bildung von 2-Amino-5- und -3-hydroxy-acetophenon (4a und 4b) hervorgeht (vgl. [1])⁹). Befinden sich zusätzlich Benzol, Toluol, p-Xylol, Mesitylen oder Anisol, also aromatische Verbindungen mittlerer bis grosser Reaktivität gegenüber Elektrophilen, in der Photolyselösung, dann wird auch das Auftreten von Diphenylaminderivaten 5, offenbar entstanden durch elektrophilen Angriff der 2-Acetyl-phenylnitrenium-Ionen (10) auf die aromatischen Verbindungen, beobachtet¹⁰). Mit Anisol reagieren die Nitrenium-Ionen 10 - in *para*-Stellung des Anisols - auch mit ihren C-Atomen in Stellung 4 bzw. 6 unter Bildung der Biphenylderivate 7 und 8. Auffallend ist dabei, dass das Verhältnis von 7/8 nur 1,8:1 ausmacht, während es bei 4a/4b bei Berücksichtigung aller in Tabelle 1 aufgeführten Reaktionen $(7,5\pm 4)$:1 beträgt. Möglicherweise ist der Substitution der aromatischen Verbindungen durch die Nitrenium-Ionen 10 ein π -Komplex der Art 11 vorgelagert (Schema 2), in welchem es unter N, C-Verknüpfung zur Bildung von 5 und im Falle von Anisol unter C, C-Verknüpfung auch zur Bildung von 7 und 8 kommt.

⁹) Wir haben den Protonierungsgrad von 1 unter den Photolysebedingungen ((2-4)facher molarer Überschuss an Schwefelsäure, (20-100)facher Überschuss an aromatischer Verbindung) in Acetonitril nicht bestimmt, d.h. 2-Acetyl-phenylnitrenium-Ionen (10) könnten auch durch Protonierung des aus nicht protonierten 1 photochemisch gebildeten 2-Acetyl-phenylnitrens entstehen (vgl. [1]).

¹⁰) Die Beobachtung, dass Toluol ausschliesslich in 2- und 4-Stellung substituiert wird, 1,4-Difluorobenzol hingegen überhaupt nicht reagiert, ist ein guter Hinweis dafür, dass die zu den Diphenylaminderivaten 5 führenden Reaktionen ionischer und nicht radikalischer Natur sind. Die radikalische Phenylierung von Toluol erfolgt in ortho-, meta- und para-Stellung im Verhältnis 4,3:1,3:1; bei der Substitution durch Tritiumatome wird ein Verhältnis von 3,5:3,2:1 beobachtet (vgl. [13] und dort angegebene Literatur). Auch das bei Photolyse von 1-Methylbenzotriazol in Toluol unter Stickstoffabspaltung entstehende Diradikal substituiert Toluol in ortho-, meta- und para-Stellung unter Bildung der entsprechenden 2-Methylamino-biphenyle im Verhältnis 5,1:0,6:1 [14].

Der π -Komplex 11 aus 10 und Anisol könnte dabei jenem gleichen, der bei der säurekatalysierten Umlagerung von Chinaminen in 4-Amino-diphenyläther durchlaufen wird (vgl. [15]).

Die Bildung von Diphenylaminderivaten und 4,4'-disubstituierten Biphenylderivaten bei der Umsetzung von Phenylhydroxylaminen bzw. Azido-benzolen in Gegenwart aromatischer Verbindungen wurde, wie bereits eingangs erwähnt, schon mehrfach beobachtet. Neu ist hingegen der erstmalige Nachweis des Auftretens eines 2,4'-disubstituierten Biphenylderivates (vgl. 8, Schema I). Kliegl & Huber [7] erhielten aus Phenylhydroxylamin und Toluol mit Aluminiumchlorid 5% 4-Methyl-diphenylamin und 6,5% 4-Amino-4'-methyl-biphenyl. Borsche & Hahn [8] isolierten aus einem gleichartigen Versuch 35% des Diphenylamins und 22% Anilin als Reduktionsprodukt. Das Biphenylderivat wurde von ihnen nicht gefunden. Phenylhydroxylamin und Anisol ergaben nach [8] mit Aluminiumchlorid 35% 4-Methoxy-diphenylamin; ein entsprechendes Biphenylderivat wurde nicht beobachtet. Aus Phenylhydroxylamin und Benzol bildeten sich neben Spuren von Anilin 4-Amino-biphenyl und 4-Aminophenol [7]; im Kontrollversuch wurde aus letzterem und Benzol kein 4-Amino-biphenyl erhalten [7]. Phenylhydroxylamin ergab mit Phenol in wässeriger 25proz. Schwefelsäure 4-Amino-phenol und 12% 4-Amino-4'-hydroxy-biphenyl; letzteres entstand unter den Versuchsbedingungen nicht aus 4-Aminophenol und Phenol [16]. Wurde anstelle von Phenylhydroxylamin Azido-benzol eingesetzt, so entstanden nur Spuren des Biphenylderivates [17]. 4-Methyl-phenylhydroxylamin oder 4-Azido-toluol bildeten in Gegenwart von Phenol 4-Hydroxy-4'-methyl-diphenylamin [16] [18]. Umsetzung von Phenylhydroxylamin mit Anilin in Gegenwart von Anilin-hydrochlorid bei 130° gab Benzidin und 4- und 2-Aminodiphenylamin [19]. Die letztgenannten Produkte könnten aber auch via Hydrazobenzol entstanden sein. Sundberg & Sloan [9] erhielten bei der photochemischen Reaktion bei Raumtemperatur wie bei der thermischen Reaktion bei 85° einer Reihe aromatischer Azidoverbindungen in Gegenwart von aromatischen Verbindungen und Trifluoressigsäure (TFE) die entsprechenden Diphenylaminderivate in der Regel als Hauptprodukte. Die Ausbeuten waren bei den thermischen Reaktionen deutlich besser. Bei den photochemischen Reaktionen in Gegenwart von Mesitylen wurden daneben noch die Mesitylgruppe tragenden Azepinderivate und sich von den Aziden ableitenden Azepinonderivate sowie N-Trifluoracetylamino-phenole erhalten. Bei der thermischen Reaktion mit Azido-benzol und 2-Azidotoluol und Mesitylen wurden in geringen Mengen noch die entsprechenden Biphenylderivate gefunden. Nach Meinung der amerikanischen Autoren [9] sind für die Bildung der Diphenylaminderivate nicht Phenylnitrenium-Ionen, sondern Addukte der Azidoverbindungen mit TFE massgebend, die im geschwindigkeitsbestimmenden Schritt mit Mesitylen reagieren sollen. Der Befund, dass 4-Azido-toluol in Gegenwart von TFE mit Mesitylen 20mal rascher reagiert als mit Anisol¹¹), wird als Stütze für diese Hypothese angesehen. Bei der elektrophilen aromatischen Bromierung, Mercurierung oder Acetylierung reagiert Anisol in seiner para-Stellung aber deutlich rascher als Mesitylen (vgl. [20]), d.h. Anisol müsste, wenn es im geschwindigkeitsbestimmenden Schritt der Azidzersetzung beteiligt wäre, rascher reagieren als Mesitylen. Es ist deshalb viel wahrscheinlicher, dass auch die aromatischen Substitutionen in Gegenwart von TFE über entsprechende Phenylnitrenium-Ionen, eventuell in Form eines Ionenpaares mit den Trifluoracetat-Ionen als Gegen-Ionen, verlaufen.

Im übrigen sollte in Gegenwart von TFE unter den gewählten Bedingungen auch das Protonierungsgleichgewicht zwischen Nitren und Nitrenium-Ion nicht ausser acht gelassen werden (vgl. [1])¹²).

Wir danken der analytischen und spektroskopischen Abteilung (Leiter H. Frohofer) des organischchemischen Institutes der Universität Zürich für Analysen und Spektren. Prof. K. Grob (EAWAG, Dübendorf/ZH) sei für die Hilfe bei gas-chromatographischen Problemen gedankt. Die Arbeit wurde wiederum in dankenswerter Weise vom Schweizerischen Nationalfonds zur Förderung der wissenschaftlichen Forschung unterstützt.

¹¹) Es bildeten sich 62% 4-Methyl-4'-methoxy- und 4% 4-Methyl-2'-methoxy-diphenylamin.

¹²) Bezüglich aromatischer Substitutionen durch Arylnitrene mit Substituenten mit Elektronenakzeptorwirkung siehe [21]. Auch Octafluornaphthalin reagiert unter Substitution beim Erhitzen mit 4-Azido-toluol bzw. -anisol [22].

Experimenteller Teil

Allgemeine Bemerkungen. - Siehe [1].

1. Herstellung von 3-Methyl-2,1-benzisoxazol (1) und 2-Azido-acetophenon (2). Siehe [1].

2. Bestrahlungen von 3-Methyl-2,1-benzisoxazol (1; 3-Methylanthranil) in Gegenwart von Schwefelsäure und aromatischen Verbindungen. - Wenn nichts Abweichendes vermerkt wird, wurden die Bestrahlungen in Pyrexgefässen ausgeführt. Starke Verharzung der Küvettenwände und/oder die Bildung fluoreszierender Nebenprodukte (Acridine?) verhinderten die vollständige Umsetzung des 3-Methyl-2, 1-benzisoxazols (1). Nach der Aufarbeitung (siehe [1]) wurden 2-Amino-5-hydroxyacetophenon (4a) und 2-Amino-3-hydroxy-acetophenon (4b) mit 2N NaOH ausgeschüttelt, durch Kugelrohr (KR.)-Sublimation gereinigt und durch Vergleich mit authentischen Proben (vgl. [1]) identifiziert (IR., DC., Misch-Smp.). Alle DC. wurden mit Pentan/Äther 1:1 2mal entwickelt. 3-Methyl-2.1-benzisoxazol (1) (WS = 0.56) f\"arbt sich in der Eisen(III)chlorid-Reaktion (ER., vgl. [1]) braunviolett. 2-Amino-acetophenon (3) (WS.=0,49) orange. Die 2-Anilino-acetophenone 5 [10] waren im DC. an ihrer leuchtend gelben Farbe und tiefvioletten, manchmal nach gelb umschlagenden ER. leicht zu erkennen; WS.≥0,60. Präp. DC. ergab jeweils DC.-reine 2-Acetyl-diphenylamine 5, während 1 und 3 als Gemisch erhalten wurden, welches durch präp. DC. (Methylenchlorid/Pentan 1:9) aufgetrennt wurde. Die Identifizierung von 1 und 3 erfolgte durch Vergleich mit authentischem Material (DC., IR.). Es gilt: Rf(Diphenylaminderivate 5) > Rf(2, 1-Benzisoxazol 1) > Rf(Aminoacetophenon 3) > Rf(Aminohydroxy-acetophenon 4b)>Rf(Amino-hydroxy-acetophenon 4a). Ausbeuten betreffen KR.-destilliertes bzw. -sublimiertes Material bezüglich eingesetztem 1 = 100%.

2.1. Bestrahlung in Gegenwart von Benzol. Es wurde eine Lösung von 750 mg 3-Methyl-2,1benzisoxazol (1), 1,25 ml 96proz. Schwefelsäure und 56 ml Benzol in 84 ml Acetonitril $(c(1) = 4, 0 \cdot 10^{-2}, c(H_2SO_4) = 1,7 \cdot 10^{-1}, c(Benzol) = 4,5 mol/l; 1:4:100)$ während 2 Std. bestrahlt und nach Aufarbeitung 153 mg (20%) 1, 82 mg (11%) 2-Amino-acetophenon (3), 256 mg (30%) 2-Amino-5-hydroxy-acetophenon (4a), 20 mg (2%) 2-Amino-3-hydroxy-acetophenon (4b) und, nach KR.-Destillation bei 95-105°/ 10^{-3} Torr, 164 mg (14%) 2-Anilino-acetophenon (5a) (WS.=0,73) vom Smp. 63,5-64,5° (Pentan; Lit. 64° [10]) erhalten. Amin 5a wurde auf unabhängigem Wege auch aus 3 und Brombenzol [10] hergestellt. Die Produkte zeigten identische IR.-Spektren; der Misch-Smp. war ohne Depression.

2.1.1. Bestrahlung ohne Schwefelsäure. Eine gleiche Bestrahlung, jedoch ohne Schwefelsäure, ergab gemäss DC. hauptsächlich 1 neben wenig unbekanntem Produkt bei WS = 0,10 (Azepinderivat?): 3, 4a, 4b und 5a konnten nicht beobachtet werden (DC.).

2.1.2. Kontrollbestrahlung ohne Benzol. Es wurde eine Lösung von 160 mg 1 und 0,25 ml 96proz. Schwefelsäure in 8 ml Acetonitril ($c(1)=1,5\cdot10^{-1}, c(H_2SO_4)=5,9\cdot10^{-1} \text{ mol/l}$) während 20 Min. bestrahlt und danach 80 mg (50%) 1, 38 mg (20%) 4a und 5 mg (2,5%) 4b isoliert. Das Reduktionsprodukt 3 konnte nicht beobachtet werden (DC.).

2.2. Bestrahlung in Gegenwart von Toluol. Bestrahlung (3 Std.) einer Lösung von 934 mg 3-Methyl-2,1-benzisoxazol (1), 0,75 ml 96proz. Schwefelsäure und 78 ml Toluol in 116 ml Acetonitril $(c(1)=3,3 \cdot 10^{-2}, c(H_2SO_4)=6,4 \cdot 10^{-2}, c(Toluol)=3,5 mol/l; 1:2:100)$ lieferte 361 mg (39%) 1, 67 mg (7%) 2-Aminoacetophenon (3), 212 mg (20%) eines Gemisches von 2-Amino-5- und 2-Amino-3-hydroxyacetophenon (4a und 4b; nicht getrennt) und, nach KR.-Destillation bei 95-105°/10⁻³ Torr, 226 mg (14%) eines Gemisches der isomeren Diphenylderivate 5b und 5d (WS.=0,73; zwei Pike im GC.) mit folgender Analyse:

C₁₅H₁₅NO (225,28) Ber. C 79,97 H 6,71 N 6,22% Gef. C 80,18 H 6,60 N 6,16%

Als Vergleichssubstanzen wurden 2-(o-Toluidino)-(**5b**), 2-(m-Toluidino)-(**5c**) und 2-(p-Toluidino)acetophenon (**5d**) aus 2-Amino-acetophenon (**3**) und den entsprechenden Bromtoluolen hergestellt [10] (korrekte Analysen und Spektren; alle im DC. mit WS.=0,73). Durch Zumischen im GC. wurden die isomeren Photoprodukte als **5b** und **5d** identifiziert. Das *meta*-substituierte Produkt **5c** konnte nicht nachgewiesen werden (Nachweisbarkeitsgrenze im GC. $\leq 3\%$ bezüglich **5b** oder **5d**). Durch quantitative GC. (Pikhöhenverhältnis; Eichkurve) wurde festgestellt, dass **5b** und **5d** zu 31 und 69% vorlagen.

2.2.1. Bestrahlung in Quarzgefässen. Eine gleiche Bestrahlung, jedoch durch Quarz ausgeführt, zeigte im DC. die gleichen Produkte wie die Bestrahlung durch Pyrex.

2.3. Bestrahlung in Gegenwart von p-Xylol. Es wurde eine Lösung von 558 mg 3-Methyl-2,1benzisoxazol (1), 0,46 ml 96proz. Schwefelsäure und 52 ml p-Xylol in 78 ml Acetonitril ($c(1) = 3,2 \cdot 10^{-2}$, $c(H_2SO_4) = 6.5 \cdot 10^{-2}$, c(Xylol) = 4.2 mol/l; 1:2:130) während 2,25 Std. bestrahlt und folgende Verbindungen isoliert: 138 mg (25%) 1, 70 mg (12%) 2-Amino-acetophenon (3), 98 mg (16%) 2-Amino-5-hydroxy-acetophenon (4a), 12 mg (2%) 2-Amino-3-hydroxy-acetophenon (4b) und, nach KR.-Destillation bei 95-105°/10⁻³ Torr, 84 mg (8%) 2-(2'.5'-Xylidino)-acetophenon (5e; WS.=0,73) vom Smp. 80,5-81,5° (Pentan; Lit. 81° [10]). – IR. und ¹H-NMR. stimmten mit den Angaben in [10] überein.

C₁₆H₁₇NO (239,30) Ber. C 80,30 H 7,16 N 5,85% Gef. C 80,64 H 7,18 N 5,94%

2.4. Bestrahlung in Gegenwart von Mesitylen. Bestrahlung (4 Std.) einer Lösung von 800 mg 3-Methyl-2, 1-benzisoxazol (1), 0,61 ml 96proz. Schwefelsäure und 66 ml Mesitylen in 98 ml Acetonitril $(c(1)=3,7\cdot10^{-2}, c(H_2SO_4)=6,9\cdot10^{-2}, c(Mesitylen)=5,0 mol/l; 1:2:135)$ lieferte 190 mg 1 (24%), 101 mg (12%) 2-Amino-acetophenon (3), 120 mg (13%) 2-Amino-5-hydroxy-acetophenon (4a), 32 mg (3,5%) 2-Amino-3-hydroxy-acetophenon (4b) und, nach KR.-Destillation bei 115-125°/10⁻³ Torr, 110 mg (7%) 2-Mesitylamino-acetophenon (5f; WS. = 0,72) vom Smp. 128,0-128,5° (Pentan/Äther oder Äthanol; Kristallmodifikationsumwandlung Nadeln \rightarrow Plättchen zwischen 120 und 127°; Lit. 124,5° (Äthanol) [10]). – IR. und ¹H-NMR, waren im Einklang mit den Angaben in [10].

C₁₇H₁₉NO (253,33) Ber. C 80,57 H 7,56 N 5,53% Gef. C 80,82 H 7,64 N 5,75%

2.5. Bestrahlung in Gegenwart von 1,4-Difluorbenzol. Es wurde eine Lösung von 704 mg 3-Methyl-2,1-benzisoxazol (1), 0,4 ml 96proz. Schwefelsäure und 40 ml 1,4-Difluorbenzol in 89 ml Acetonitril $(c(1)=4,1\cdot10^{-2}, c(H_2SO_4)=7,5\cdot10^{-2}, c(Difluorbenzol)=3,2 \text{ mol}/1; 1:2:80)$ während 3 Std. bestrahlt. Isolierung der Produkte ergab 201 mg (31%) 1, 19 mg (3%) 2-Amino-acetophenon (3), 161 mg (22%) 2-Amino-5-hydroxy-acetophenon (4a) und 26 mg (3,5%) 2-Amino-3-hydroxy-acetophenon (4b). Es wurden keine weiteren Produkte beobachtet (DC.).

2.6. Bestrahlung in Gegenwart von Anisol. Die Bestrahlung (3 Std.) von 858 mg 3-Methyl-2,1benzisoxazol (1), 1,4 ml 96proz. Schwefelsäure und 14 ml Anisol in 164 ml Acetonitril ($c(1) = 3,6 \cdot 10^{-2}$, $c(H_2SO_4) = 1.5 \cdot 10^{-1}$, $c(Anisol) = 7.1 \cdot 10^{-1}$ mol/3; 1:4:20) führte zu einem komplexen Gemisch (DC.). Es wurde zuerst mit wässeriger, 2n NaOH extrahiert, dann mit wässeriger, 2n H₂SO₄. Aus dem alkalischen Auszug wurden 143 mg (15%) 2-Amino-5-hydroxy-acetophenon (4a) und 35 mg (4%) 2-Amino-3-hydroxy-acetophenon (4b) gewonnen. Der saure Auszug lieferte ein Gemisch von 2-Aminoacetophenon (3) mit einem hellgelben Produkt 6 (WS. = 0,26; sehr starke Fluoreszenz im UV₃₅₀). Durch präp. DC. (Pentan/Äther 1:1) wurden 3 und 6 DC.-rein erhalten. Die Hauptmenge an 3 befand sich jedoch im Neutralteil der Extraktion (DC.). Daher wurde die geringe Menge an 3 (ungereinigt etwa 6 mg) aus den sauren Extrakten mit dem Neutralteil (roh etwa 570 mg) vereinigt. Im DC. des Neutralteils wurde eine uneinheitliche gelbe Zone von WS = 0,60-0,75 (violette, blaue und gelbe Farbtöne in der ER.) und daneben 1 (WS. = 0.56), das Reduktionsprodukt 3 (WS. = 0.49) sowie ein hellgelbes Produkt 7 (WS. = 0,36; blaue ER.; blaue Fluoreszenz im UV₃₅₀) beobachtet. Durch präp. DC. (Pentan/ Äther 5:1) wurde die gelbe, raschlaufende Gemischzone (WS.=0,60-0,75) vom Gemisch aus 1, 3 und 7 abgetrennt. Aus letzterem wurden im KR. bei $80^{\circ}/10^{-3}$ Torr 1 und 3 abdestilliert; das ungereinigte 7 kristallisierte im Rückstand. Durch präp. DC. (Methylenchlorid/Pentan 1:9) wurden 1 und 3 getrennt und in gewohnter Weise gereinigt. Es wurden 215 mg (25%) 3-Methyl-2, 1-benzisoxazol (1) und 14 mg (2%) 2-Amino-acetophenon (3) erhalten. Das gelbe Gemisch mit WS = 0.60-0.75 (roh etwa 350 mg) wurde an 30 g Kieselgel mit Hexan als Laufmittel sehr langsam chromatographiert. Im Verlaufe von drei Wochen wurden drei gelbe, DC.-reine Produkte, nämlich 5i, gefolgt von 5g und 8, eluiert.

2.6.1. 2-(\circ -Anisidino)-acetophenon (**5g**) [10]. Nach KR.-Destillation bei 110-120°/10⁻³ Torr wurden 55 mg (3.5%) **5g** vom Smp. 69,0-69,5° (Pentan/Äther: Lit. 70° [10]) erhalten. Das Produkt war identisch mit dem aus 2-Amino-acetophenon (**3**) und 2-Brom-anisol hergestelltem Material [10] (DC., GC., IR. und Misch-Smp.).

2.6.2.2-(p-Anisidino)-acetophenon (5i) [10]. KR.-Destillation bei $110-120^{\circ}/10^{-3}$ Torr lieferte 103 mg (6,6%) 5i vom Smp. 67,2-68,2° (Äthanol; Lit. 69° [10]). Verbindung 5i wurde auch aus 2-Amino-acetophenon (3) und 4-Bromanisol hergestellt. Beide Produkte waren identisch (DC., GC., IR. und Misch-Smp.).

2.6.3. 2-Amino-5-(4'-methoxyphenyl)-acetophenon (7). Das nicht destillierte 7 wurde in Äther mit Aktivkohle kurz aufgekocht, durch Kieselgel filtriert, das Filtrat eingeengt und 7 mit Pentan gefällt: 55 mg (3,5%) 7; gelbe Nadeln vom Smp. 101,5-102,5° (Äther/Pentan). – UV. (Äthanol): λ_{max} 247 (4,50).

284 (4.37), 382 (3,65); λ_{\min} 265 (4.09), 327 (2.83). - IR. (CHCl₃): 3486 und 3343 (NH₂), 2840 (OCH₃), 1640 (aromat. Keton), 1580, 1480, 1362, 1165 und 952. - ¹H-NMR. (CDCl₃): 2,62 (*s*, CH₃CO-C(1)); 3,83 (*s*, CH₃O-C(4'); 6,29 (br. *s*, NH₂); 6,69 (*d*, J(3,4)=8, H-C(3)); 6,94 (*d*-artiges *m* (*AA'BB'*-System), J(3',2')=J(5',6')=9, H-C(3') und -C(5')); 7,45 (*d*-artiges *m* (*AA'BB'*-System), J(2',3')=J(6',5')=9, H-C(2') und -C(6')); 7,39-7,52 (*m*, J(4,6) und J(4,3) nicht bestimmbar, H-C(4)); 7,85 (*d*, J(6,4)=2, H-C(6)). - MS.: 241 (100, M^+), 226 (48), 198 (13), 154 (14), 43 (10).

C₁₅H₁₅NO₂ (241,28) Ber. C 74,66 H 6,27 N 5,81% Gef. C 74,57 H 6,05 N 5,73%

2.6.4. 2-Amino-3-(4'-methoxyphenyl)-acetophenon (8). KR.-Destillation bei 110-120°/10⁻³ Torr lieferte 35 mg (2,3%) 8 als gelbes Öl. – UV. (Äthanol): λ_{max} 225 (4,42), 242 (4,36). 277s (3.52), 369 (3,79); λ_{min} 233 (3,54), 303 (2,72). – IR. (CCl₄): 3480 und 3322 (NH₂), 2838 (OCH₃), 1650 (aromat. Keton), 1600, 1510, 1430, 1356, 1170, 1025, 957. – ¹H-NMR. (CDCl₃): 2,60 (s, CH₃CO-C(1)); 3,84 (s, CH₃O-C(4')); 6,53 (sehr br. s, NH₂); 6,66 (*t*-artiges m, J(5,4) \approx J(5,6) = 10, H-C(5)); 6,97 (*d*-artiges m (AA'BB'-System), J(3'.2') = J(5',6') = 8,5, H-C(3') und -C(5')); 7,19 (d×d-artiges m, J(4,5) = 10, J(4,6) = 1,5, H-C(4)); 7,30 (*d*-artiges m (AA'BB'-System), J(2'.3') = J(6',5') = 8,5, H-C(2') und -C(6')); 7,72 (d×d mit Feinstr., J(6,5) = 10, J(6,4) = 1,5, H-C(6)). – MS.: 241 (100, M⁺), 226 (44), 198 (14), 183 (9), 167 (13), 154 (13), 113 (9), 42 (10).

C₁₅H₁₅NO₂ (241,28) Ber. C 74,66 H 6,27 N 5,81% Gef. C 74,57 H 6,05 N 5,73%

2.6.5. 2-Methoxy-9-methyl-acridin (6). KR.-Destillation/Sublimation bei $120-130^{\circ}/10^{-2}$ Torr lieferte 31 mg (2.2%) 6; gelbe Nadeln vom Smp. 139,5-140,5° (Methylenchlorid/Pentan). Das identische Produkt (DC., Fluoreszenz UV₃₅₀, IR., Misch-Smp.) wurde durch Kochen von 2-(p-Anisidino)-acetophenon (5i) mit Schwefelsäure in Acetonitril erhalten; vgl. 2.6.7.

2.6.6. Kontrollbestrahlung von 2-(p-Anisidino)-acetophenon (5i). Es wurde eine Lösung von 5i, Schwefelsäure und Anisol in Acetonitril $(c(5i) = 4.2 \cdot 10^{-2} \text{ mol/l}; c(5i)/c(H_2SO_4)/c(Anisol) = 1:2:100)$ während 3 Std. bestrahlt und nach 2.6 aufgearbeitet. DC. des Bestrahlungs- und des entsprechenden Dunkelversuches zeigten neben 5i einzig den Fleck für das Acridinderivat 6. Die Biphenylderivate 7 und 8 wurden nicht beobachtet.

2.6.7. Thermische Umsetzung von 2-(p-Anisidino)-acetophenon (5i) mit Schwefelsäure (vgl. [12]). Ein Gemisch von 190 mg (0,8 mmol) 5i und 0,1 ml (1,8 mmol) 96proz. Schwefelsäure in 20 ml Acetonitril wurde 30 Min. unter Rückfluss gekocht, dann mit Natriumhydrogencarbonat im Überschuss versetzt, i.V. eingeengt und mit Essigester extrahiert. Präp. DC. (Pentan/Äther 1:1) lieferte 55 mg (29%) unverändertes 5i und, nach KR.-Sublimation/Destillation bei 120-130°/10⁻² Torr, 98 mg (56%) 2-Methoxy-9-methyl-acridin (6); gelbe Nadeln vom Smp. 139,5-140,5° (Methylenchlorid/Pentan). - UV. (Äthanol): λ_{max} 247s (4.80), 256 (5.51), 317s (3.35), 333 (3.70), 349 (3.92), 370 (3.82), 390 (3.73); λ_{min} 304 (3.0), 338 (3.7), 361 (3.7), 380 (3.6). - IR. (KBr): 2920, 1630, 1470, 1220, 1020, 818, 741. - ¹H-NMR. (CDCl₃): 2.90 (s, CH₃-C(9)); 3.93 (s, CH₃O); 7,11-7.82 (m, 4 arom. H); 8,02-8,32 (m, 3 arom. H). - MS.: 223 (100, M^+), 180 (73), 152 (10).

C₁₅H₁₃NO (223,26) Ber. C 80,69 H 5,87 N 6,27% Gef. C 80,42 H 6,03 N 6,29%

2.6.8. Thermische Umsetzung von 2-(o-Anisidino)-acetophenon (5g) mit Schwefelsäure. Es wurde mit 5g wie für 5i (2.6.7) beschrieben verfahren. Das DC. (Pentan/Äther 1:1; 2malige Entwicklung) zeigte bei WS. = 0.65 den Reaktand 5g und bei WS. = 0.33 in Spuren ein stark fluoreszierendes Produkt an, welches nach präp. DC. undestilliert in 3 mg anfiel und verworfen wurde.

2.6.9. Kontrollbestrahlung der Amino-acetophenone **4a** bzw. **4b** in Gegenwart von Anisol. Nach 2stdg. Bestrahlung eines Gemisches von 20 mg 2-Amino-5-hydroxy-acetophenon (**4a**) und 2-Amino-3-hydroxy-acetophenon (**4b**), 1 ml Anisol und 0,1 ml 96proz. Schwefelsäure in 11 ml Acetonitril (c(**4a** und **4b**) = 1,1 \cdot 10⁻², c(Anisol) = 7,1 \cdot 10⁻¹, c(H₂SO₄) = 1,5 · 10⁻¹ mol/l) und gewohnter Aufarbeitung wurde im DC. neben Harzen (Startfleck) ausschliesslich unverändertes **4a/4b** beobachtet.

2.6.10. Kontrollbestrahlung des Reduktionsproduktes 3 in Gegenwart von Anisol. In der Lösung von 30 mg 2-Amino-acetophenon (3), 5,6 ml Anisol und 0,125 ml 96proz. Schwefelsäure in 8,4 ml Acetonitril $(c(3) = 1.5 \cdot 10^{-2}, c(\text{Anisol}) = 4.2, c(\text{H}_2\text{SO}_4) = 1.6 \cdot 10^{-1} \text{ mol/l})$ wurde nach 4stdg. Bestrahlung und gewohnter Aufarbeitung neben wenig Harzen ausschliesslich Reaktand 3 (DC.) beobachtet.

3. Umsetzung von 2-Azido-acetophenon (2) in Gegenwart von Schwefelsäure und Benzol. – 3.1. Thermische Zersetzung von 2-Azido-acetophenon (2). Die Lösung von 286 mg (1,8 mmol) 2 in 7 ml Benzol wurde zu 7 ml eiskalter 96proz. Schwefelsäure getropft. Nach Aufarbeitung zeigte das DC. die Verbindungen 3, 4a, 4b und 5a sowie ein weiteres Produkt mit WS. = 0,25 und auffallend starker, blauer Fluoreszenz im UV₃₅₀ an. Es wurden isoliert: 7 mg (3%) 3, 169 mg (63%) eines Gemisches von 4a und 4b und 21 mg (6%) 5a. Das stark fluoreszierende Produkt fiel in sehr geringer Menge an (ungereinigt etwa 2 mg = 1%), konnte aber durch DC. als 9-Methyl-acridin (9) identifiziert werden (vgl. 3.2).

3.2. Bestrahlung von 2-Azido-acetophenon (2). Es wurde eine Mischung von 395 mg 2, 28 ml Benzol und 0,63 ml 96proz. Schwefelsäure in 42 ml Acetonitril $(c(2)=3,7\cdot10^{-2}, c(H_2SO_4)=1,47\cdot10^{-1}, c(Benzol)=4,5 mol/l)$ während 4,5 Std. bestrahlt und danach 45,1 mg (12%) 2, 3 mg (2%) Reduktionsprodukt 3, 3 mg (2%) 3-Methyl-2,1-benzisoxazol (1), 50 mg (14%) 4a, 3,2 mg (1%) 4b, 41 mg (8%) 5a und 20 mg (4%) 9-Methyl-acridin (9) vom Smp. 116,6-118,6° (Methylenchlorid/Pentan; Lit. 114° (Ligroin) [23]) isoliert. Verbindung 9 wurde auch nach [10] aus 5a durch säurekatalysierte Cyclisierung hergestellt. Beide Proben zeigten identische IR.; der Misch-Smp. war ohne Depression.

LITERATURVERZEICHNIS

- [1] Th. Doppler, H. Schmid & H.-J. Hansen, Helv. 62. 271 (1979).
- [2] E. Bamberger, Liebigs Ann. Chem. 424, 233 und 297 (1921).
- [3] E. Giovannini, J. Rosales & B.F.S.E. de Souza, Helv. 54, 2111 (1971); E. Giovannini & B.F.S.E. de Sousa, Helv. 62, 185, 198 (1979).
- [4] M. Georgarakis, Th. Doppler, M. Märky, H.-J. Hansen & H. Schmid, Helv. 54, 2916 (1971); Th. Doppler, H.-J. Hansen & H. Schmid, Helv. 55, 1730 (1972).
- [5] E. Georgarakis, H. Schmid & H.-J. Hansen, Helv. 62, 234 (1979).
- [6] P.A.S. Smith & B.B. Brown, J. Amer. chem. Soc. 73, 2438 (1951).
- [7] A. Kliegl & H. Huber, Ber. deutsch. chem. Ges. 53, 1646 (1920).
- [8] W. Borsche & H. Hahn, Chem. Ber. 82, 260 (1949).
- [9] R.J. Sundberg & K.B. Sloan, J. org. Chemistry 38, 2052 (1973).
- [10] J. Itier & A. Casadevall, Bull. Soc. chim. France 1969, 2342.
- [11] M.L. Bailey, in R.A. Achesons, 'Acridines', Interscience Publ., J. Wiley & Sons, Inc., New York 1973, S. 631ff.
- [12] N.R. Raulins, in [11], S. 41ff.
- [13] W.A. Pryor, T.H. Lin, J.P. Stanley & R. W. Henderson, J. Amer. chem. Soc. 95, 6993 (1973).
- [14] P. Claus, Th. Doppler, N. Gakis, M. Georgarakis, H. Giezendanner, P. Gilgen, H. Heimgartner, B. Jackson, M. Märky, N.S. Narasimhan, H.J. Rosenkranz, A. Wunderli, H.-J. Hansen & H. Schmid, Pure appl. Chemistry 33, 339 (1973); M. Märky, Dissertation, Universität Zürich 1971.
- [15] B. Miller, J. Amer. chem. Soc. 86, 1127, 1135 (1964).
- [16] E. Bamberger, Liebigs Ann. Chem. 390, 131 (1912).
- [17] E. Bamberger, Liebigs Ann. Chem. 443, 192 (1925).
- [18] E. Bamberger & J. Brun, Helv. 6, 935 (1923).
- [19] E. Bamberger & J. Lagutt, Ber. deutsch. chem. Ges. 31, 1500 (1898).
- [20] L.M. Stock & H.C. Brown, in V. Golds, 'Advances in Physical Organic Chemistry', Academic Press. 1963, Vol. 1, S. 35ff.
- [21] R.A. Abramovitch, S.R. Challand & E.F. V. Scriven, J. org. Chemistry 37, 2705 (1972).
- [22] J. Ashby, E.F.V. Scriven & H. Suschitzky, Chem. Commun. 1972, 366.
- [23] H. Jensen & F. Rethwisch, J. Amer. chem. Soc. 50, 1146 (1928).