COMMUNICATIONS

A New Approach to the "Cephem" System; Synthesis of 3-Acetyl-7,7-dimethyl-8-oxo-5-thia-1-azabicy-clo[4.2.0]-2-octene

Jean Claude Meslin, Alain Reliquet, Françoise Reliquet, Hervé Quiniou

Laboratoire de Chimie Organique 2, 2 rue de la Houssinière, F-44072 Nantes Cedex

Several publications 1,2,3 have dealt with the synthesis of cephalosporins lactonized or lactamized in the 3,4 positions from 3,6-dihydro-2H-1,3-thiazines suitably substituted in position 2.

Recent work carried out in the laboratory⁴ has shown that N'-thioaroylformamidines react with various dienophiles to give 6H-1,3-thiazines.

$$A_{r}-C-N=CH-N$$

$$R'$$

$$+ H_{2}C=CH-R$$

$$A_{r}$$

$$+ H_{2}C=CH-R$$

Following the studies reported in Ref.^{5,6}, we showed⁷ that the C—N double bond of acetyl-1,3-thiazines may be selectively reduced using aluminum amalgam; the two other reducible centers in the system

C S C N C C C(CH₃) O remain unaffected. We report here that a suitably substituted 5-acetyl-3,6-dihydro-2*H*-1,3-thiazine obtained in this manner can be cyclized to give 3-acetyl-7,7-dimethylcephem (8).

- New or improved synthetic methods
- Key intermediates
- with full experimental and analytical data

In the reaction sequence $1 \rightarrow 8$, the carboxy group required for cyclization to lactam 8 is introduced in the form of its *t*-butyl ester which can be easily cleaved.

The two methyl groups in position α with respect to the thiocarbonyl group in 3 prevent another possible condensation reaction at $C-\alpha$ in the reaction of 3 with dimethylformamide dimethylacetal to give the formamidine derivative 4. Further, the absence of reactive hydrogen at $C-\alpha$ precludes the formation of a 3,6-dihydro-2H-1,3-thiazine in place of the desired 6H-1,3-thiazine 5 in the reaction of 4 with butenone.

The selective reduction of the exocyclic double bond in 2-alkylidene-3,6-dihydro-2*H*-1,3-thiazines is, in fact, still an unsolved problem.

The last two steps of the sequence $(6 \rightarrow 7 \rightarrow 8)$ were performed following the method of Ref.^{1,2,3} which is based on Ref.¹⁰: cleavage of the *t*-butyl ester group of 6 with dry hydrogen chloride followed by cyclization of the β -amino acid 7 using dicyclohexylcarbodiimide.

The analogous preparation of the formyl derivative 9

is still faced with the difficulty of selectively reducing the C=N double bond in the formyl derivative corresponding to 5.

It should be mentioned that unsubstituted and monosubstituted cephems have earlier been obtained by a different route⁸: dehydration of 4-hydroxycephems which are, in turn, prepared from 2-oxoazetidines and 3-mercaptopropanals or 3-mercaptopropanones.

t-Butyl 2-Cyano-2-methylpropanoate (2):

Prepared following a similar method to that described in Ref. by twofold methylation of t-butyl cyanoacetate; yield: 60%; b.p. 82 °C/20 torr.

t-Butyl 3-Amino-2,2-dimethyl-3-thioxopropanoate (3):

Hydrogen sulfide is bubbled through a solution of *t*-butyl 2-cyano-2-methylpropanoate (2; 12.50 g, 74 mmol) in triethylamine/pyridine (1/1; 160 ml). After 70 h, the solvents are evaporated. The residue is dissolved in benzene and chromatographed on a column of neutral alumina using ether as eluent; quantitative yield; m.p. $119\,^{\circ}\mathrm{C}$ (from ethyl acetate/ligroin).

M.S.: m/e = 203 (M⁺).

¹H-N.M.R. (CDCl₃): δ = 1.48 (s, 9 H); 1.50 (s, 3 H); 1.56 (s, 3 H); 8.20 ppm (s, 2 H).

$t ext{-Butyl}$ 2,2-Dimethyl-3-(dimethylaminomethylene)-3-thioxopropanoate (4):

A mixture of compound 3 (4.07 g, 20 mmol) and dimethylformamide dimethyl acetal (2.38 g, 20 mmol) is stirred for 2 h at room tem-

454 Communications SYNTHESIS

perature. The methanol which forms is evaporated and the residue dissolved in benzene. This solution is column-chromatographed on silica gel using ether as eluent to give 4 as a yellow oil; quantitative yield.

C₁₂H₂₂N₂O₂S calc. C 55.78 H 8.58 S 12.41 (258.4) found 55.58 8.49 12.46

M.S.: m/e (relative intensity) = 258 (M⁺, 4), 115 (100).

¹H-N.M.R. (CDCl₃): δ = 1.40 (s, 3 H); 1.42 (s, 9 H); 1.45 (s, 3 H); 3.10 (s, 3 H); 3.20 (s, 3 H); 8.43 ppm (s, 1 H).

t-Butyl 2-(5-Acetyl-6H-1,3-thiazin-2-yl)-2-methylpropanoate (5):

Butenone (0.435 g, 62 mmol) is added to a solution of compound 4 (1.60 g, 6.2 mmol) in benzene (15 ml) containing a trace of hydroquinone, the mixture is heated to reflux for 12 h, and then evaporated to dryness. The residue is dissolved in benzene (10 ml) and column-chromatographed on neutral alumina using benzene/ether (95/5) as eluent to give 5 as yellow oil; yield: 1.4 g (80%).

C₁₄H₂₁NO₃S calc. C 59.33 H 7.47 (283.4) found 59.56 7.70

M.S.: $m/e = 283 \text{ (M}^+\text{)}$.

¹H-N.M.R. (CDCl₃): δ =1.47 (s, 15 H); 2.37 (s, 3 H); 3.50 (s, 2 H); 7.75 ppm (s, 1 H).

t-Butyl 2-(5-Acetyl-3,6-dihydro-2*H*-1,3-thiazin-2-yl)-2-methylpropanoate (6):

Strips of aluminum (351 mg, 13 mmol) are covered with a 5% aqueous solution of mercury(II) chloride. After a few minutes, the supernatant liquid is discarded and the amalgam washed twice with water. A solution of compound 5 (920 mg, ~ 3.25 mmol) in ethanol (20 ml) is added to the amalgam and the mixture is stirred for 12 h at room temperature. The aluminum hydroxide formed is filtered off. The filtrate is evaporated, the residue dissolved in ether, and column-chromatographed on silica gel using ether as eluent to give 6 as a colorless oil; yield: 611 mg (66%).

Microanalysis is not reliable in this case since compound 6 completely decomposes within one week at room temperature. However, T.L.C. on silica gel plates (eluent:ether) shows only one spot (iodine vapors).

 $C_{14}H_{23}NO_3S$ (285.3)

M.S.: m/e (relative intensity) = 285 (M⁺, 6), 142 (100).

¹H-N.M.R. (CDCl₃): δ =1.30 (s, 3 H); 1.38 (s, 3 H); 1.48 (s, 9 H); 2.20 (s, 3 H); 3.40, 3.66 (2d, 2 H, S—CH₂, J=18 Hz); 4.45 (d, 1 H, S—CH - N; J=3 Hz); 5.88 (2d, 1 H, N—H, J=3 Hz, 6.5 Hz); 7.55 ppm (d, 1 H, J=6.5 Hz).

2-(5-Acetyl-3,6-dihydro-2*H*-1,3-thiazin-2-yl)-2-methylpropanoic Acid (7):

Dry hydrogen chloride is bubbled through a solution of compound 6 (941 mg, 3.3 mmol) in dry nitromethane (30 ml) at 0 °C. After 30 min, the solvent is evaporated at 40 °C to give 7 as an unstable colorless oil; yield: 680 mg (90%).

[Due to the insolubility and instability of compound 7 we were not able to obtain microanalytical data or an N.M.R. spectrum].

 $C_{10}H_{15}NO_3S$ (229.2)

M.S.: m/e (relative intensity) = 229 (M⁺, 10), 142 (100)

3-Acetyl-7,7-dimethylcephem (3-Acetyl-7,7-dimethyl-8-oxo-5-thia-1-azabicyclo[4.2.0]-2-octene) (8):

Dicyclohexylcarbodiimide (728 mg, 3.3 mmol) is added to a suspension of compound 7 (756 mg, 3.3 mmol) in nitromethane/dichloromethane (1/1; 110 ml) under nitrogen and the mixture is stirred for 3 days at room temperature. The dicyclohexylurea is then filtered off, the filtrate is evaporated and the residue taken up twice in boiling benzene. The solution is column-chromatographed on silica gel using benzene/ether (95/5) as eluent to give 8 as a paleyellow oil; yield: 397 mg (57%).

C₁₀H₁₃NO₂S calc. C 56.84 H 6.20 (211.3) found 57.02 6.47

M.S.: m/e (relative intensity) = 211 (M $^{\circ}$, 35), 183 (8), 168 (12), 142 (39), 70 (100).

I.R.: $\nu = 1780$ cm⁻¹.

¹H-N.M.R. (CDCl₃): δ =1.36 (s, 3 H); 1.51 (s, 3 H); 2.29 (s, 3 H); 3.23 (2 d, 1 H, J=17 Hz, 2 Hz); 3.97 (d, 1 H, J=17 Hz); 4.67 (s, 1 H, S—CH—N); 7.70 ppm (d, 1 H, J=2 Hz, N—CH—).

We thank Dr. C. Rabiller for recording the N.M.R. spectra.

Received: July 9, 1979 (Revised form: November 19, 1979)

- ⁸ H. W. Schnabel, D. Grimm, H. Jensen, Justus Liebigs Ann. Chem. 1973, 477.
- H. W. Schnabel, H. Jensen, German Patent (DOS) 2337447 (1975), Farbwerke Hoechst AG; C. A. 82, 171006 (1975).
- S. O. Lawesson, E. H. Larsen, H. J. Jakobsen, Arkiv Kemi 23, 453 (1965).
- J. C. Sheehan, K. R. Henery-Logan, J. Am. Chem. Soc. 84, 2983 (1962).

¹ R. Heymès, G. Amiard, G. Nominé, C. R. Acad. Sci. 263, 170 (1966).

² R. Heymès, G. Amiard, G. Nominé, *Bull. Soc. Chim. Fr.* **1974**, 563.

³ R. Heymès, J. Martel, G. Nominé, *Bull. Soc. Chim. Fr.* **1977**, 906.

⁴ J. C. Meslin, H. Quiniou, Bull. Soc. Chim. Fr. 1979, 347.

⁵ G. C. Barrett, S. H. Eggers, T. R. Emerson, G. Lowe, *J. Chem. Soc.* 1964, 788.

D. M. Green, A. G. Long, P. J. May, A. F. Turner, J. Chem. Soc. 1964, 766.

G. Duguay et al., J. Heterocycl. Chem., in press and unpublished results.