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Total Synthesis of (+)-Cephalosporolide E and (–)-Cephalosporolide F en route 
to Bassianolone
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Abstract: A stereoselective synthesis of (+)-cephalosporolide E
and (–)-cephalosporolide F en route to bassianolone is described.
The key steps involve cross metathesis to get the desired b,g-unsat-
urated ester, asymmetric dihydroxylation to install the b-hydroxy-
g-lactone moiety and spiroketalization. Although attempts to get
free bassianolone failed, the first total synthesis of natural cepha-
losporolides E and F has been achieved in nine steps and 6.3% and
3.5% overall yields, respectively.
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In 2005, Oltra and co-workers1 isolated (+)-bassianolone
(1), a rare antimicrobial precursor of cephalosporolides E
(2) and F (3) from the entomoparasitic fungus Beauveria
bassiana (Figure 1). The chemical structure of 1 was es-
tablished by NMR study of its bisacetate derivative, and
the relative and absolute configuration was ascertained by
chemical correlation with 2 and 3.1 It was also converted
into cephalosporolides E and F by passing through a pad
of silica gel where it undergoes spiroketalization. This
confirmed the relative (3S*,4S*,9R*) configurations.1

Cephalosporolides E and F were isolated by Hanson and
co-workers2 from the fungus Cephalosporium aphidicola
and later by Rukachaisirikul and co-workers3 from the en-
tomopathogenic fungus Cordyceps militaris BCC 2816.
These are believed to be simple artifacts formed during
the isolation process. However, the presence of spirotricy-

clic core in several other isolated natural products4 aug-
ments that these could be of natural origin. We planned to
synthesize (+)-bassianolone (1) and found that, under nor-
mal laboratory conditions, it was indeed difficult to sup-
press its spiroketalization, giving 2 and 3. Hence in this
paper we discuss the first total synthesis of natural cepha-
losporolides E and F en route to bassianolone. There is
only one synthesis reported in the literature on unnatural
(–)-cephalosporolide E and (+)-cephalosporolide F.5

Figure 1 (+)-Bassianolone and cephalosporolides E and F

Our synthesis is based on the separation of cepha-
losporolides E and F formed after spiroketalization of
bassianolone (1) as shown in our retrosynthetic analysis
(Scheme 1). Bassianolone (1) can be visualized to be ob-
tained by asymmetric dihydroxylation of the b,g-unsatur-
ated ester 4 with concomitant lactonization. Compound 4
can be assembled by a cross metathesis of olefin frag-
ments 5 and 6. The compound 5 can be derived from 7
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Scheme 1 Retrosynthetic analysis of bassianolone and cephalosporolides E and F
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through allyl addition, and the latter can be readily elabo-
rated from commercially available (R)-methyl lactate (8),
which fixes the desired (9R) configuration.

We first attempted the synthesis of olefin fragment 5 as
shown in Scheme 2. Protection of the hydroxyl group in
(R)-methyl lactate (8) as tert-butyldimethylsilyl ether fol-
lowed by reduction of the ester, and Wittig olefination of
the resulting aldehyde provided ester 96 in 82% overall
yield. Double-bond reduction by catalytic hydrogenation
gave the ester 7 in excellent yields (98%). Sequential re-
duction of the ester group in 7 to the aldehyde, subsequent
allyl Grignard addition to give the alcohol 10 (92% over
two steps), and further PCC oxidation gave the desired ke-
tone 11. All attempts to remove the TBDMS group either
using TBAF–THF or 2 M HCl–MeOH or PTSA–MeOH
to get 5 gave a complex mixture. Closer analysis of this
mixture indicated products formed by partial isomeriza-
tion of the double bond to the a,b-position and acetal for-
mation due to the g-hydroxyl group. To overcome this, the
ketone functionality was protected as ketal 12 in 77%
yield. Subsequent deprotection of the TBDMS ether af-
forded the alcohol 13. A cross-metathesis7 reaction of 13
with 6 using Grubbs second-generation catalyst gave the
b,g-unsaturated ester 14 (76%), however, with poor E/Z
(3:2) selectivity.

Scheme 2 Attempted synthesis of 5 and cross metathesis. Reagents
and conditions: (a) (i) imidazole (1.2 equiv), TBDMSCl (1.1 equiv),
CH2Cl2, r.t., 12 h; (ii) DIBAL-H (1.0 equiv), CH2Cl2, –78 °C, 1.5 h;
(iii) Ph3P=CHCO2Et (1.2 equiv), THF, r.t., 12 h, 82% overall; (b) H2/
Pd-C, EtOH, r.t., 12 h, 98%; (c) (i) DIBAL-H (1.05 equiv), CH2Cl2, –
78 °C, 1.5 h; (ii) allylMgCl (1.2 equiv), THF, 0 °C, 1 h, r.t., 1 h, 92%;
(d) PCC (2.0 equiv), NaOAc (2.0 equiv), CH2Cl2, 0 °C to r.t., 4 h,
83%; (e) Bu4NF (2.0 equiv), THF, r.t., 2 h; or 2 N HCl, MeOH, r.t., 4
h; or PTSA (cat), MeOH, r.t., 4 h; (f) (CH2OH)2 (30.0 equiv), PTSA
(cat), C6H6, reflux, 14 h, 77%; (g) Bu4NF (2.0 equiv), THF, r.t., 2 h,
75%; (h) Grubbs II, 6 (5.0 equiv), CH2Cl2, reflux, 12 h, 76%.

We then moved our attention to the cross metathesis of
olefin fragments 10 and 6 (Scheme 3). Overwhelmingly,
compound 15 was obtained with improved E/Z selectivity
of calculated 5:1 (82%). IBX oxidation of alcohol 15 af-

forded the ketone 16 in good yields (89%). Further the re-
moval of TBDMS group failed to deliver compound 4.
Hence we attempted asymmetric dihydroxylation8 of ole-
fin 16. This afforded an inseparable mixture of polar prod-
ucts. These could arise from initial dihydroxylation,
concomitant lactonization, and subsequent acetalization
of the C-3 hydroxy group with the ketone functionality.
However, the products formed at various stages of this se-
quence could not be separated for analysis. We then
moved our attention to protect the ketone functionality.
Thus ketalization of 16 with ethylene glycol provided 17
(77%). Subsequent asymmetric dihydroxylation of 17
cleanly afforded the lactone 18 as a single diastereomer in
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Scheme 3 Synthesis of cephalosporolides E and F en route to bas-
sianolone. Reagents and  conditions: (a) Grubbs II, 6 (5.0 equiv),
CH2Cl2, reflux, 12 h, 82%; (b) IBX (1.6 equiv), EtOAc, reflux, 6 h,
89%; (c) Bu4NF (2.0 equiv), THF, r.t., 2 h; (d) K3Fe(CN)6, K2CO3,
MeSO4NH2, (DHQ)2PHAL, K2OsO4·2H2O, t-BuOH–H2O (1:1),
0 °C, 24 h; (e) (CH2OH)2 (30.0 equiv), PTSA (cat.), C6H6, reflux, 14
h, 77%; (f) K3Fe(CN)6, K2CO3, MeSO4NH2, (DHQ)2PHAL,
K2OsO4·2H2O, t-BuOH–H2O (1:1), 0 °C, 24 h, 70%; (g) 2 N HCl,
MeOH, r.t., 8 h or PTSA (cat.), MeOH, r.t., 8 h; (h) Bu4NF (1.5
equiv), THF, r.t., 2 h, 70%; (i) CAN (2.5 equiv), MeCN–H2O (1:1),
70 °C, 5 min, 2 (59%), 3 (33%).
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good yield (70%).9 The acid-catalyzed deprotection of
TBDMS ether and the ketal group failed to deliver free
bassianolone (1) in a single step. A stepwise removal of
TBDMS group first, followed by the ketal group, was ex-
ecuted. The compound 18 when treated with excess of
TBAF, deprotection of the ketal group was also observed
giving the mixture of 2 and 3, and no free bassianolone
was obtained. When compound 18 was treated with 1.5
equivalents of TBAF, the deprotection of only TBDMS
ether was observed to give 19 (70%).10 All attempts under
varied acid-catalyzed conditions to deprotect the ketal
functionality proved futile to obtain free bassianolone. In
all cases the mixture of 2 and 3 was obtained in variable
yields. In one of the attempts with CAN-mediated11

deprotection of the ketal functionality a cleaner deprotec-
tion–spiroketalization occurred affording 2 and 3 in high-
er yields. The crude mixture of 2 and 3 was easily
separated by flash column chromatography providing 2
(59%) and 3 (33%). The spectral and analytical data of
(+)-cephalosporolide E (2) along with its optical rotation
[a]D

25 +49.2 (c 0.25, CHCl3) were in excellent agreement
with that reported {lit.2 [a]D

30 +51.3 (c 0.42, CHCl3)}.2

Similarly, (–)-cephalosporolide F (3) had [a]D
25 –69.1 (c

0.15, CHCl3) {lit.1 [a]D
25 –33.3 (c 0.79, CHCl3) and lit.5

[a]D
25 +95.2 (c 0.9, CHCl3) for its enantiomer}. The spec-

tral data for (–)-cephalosporolide F (3) matched well with
that reported.2

In summary, the first total synthesis of natural (+)-cepha-
losporolide E and (–)-cephalosporolide F has been
achieved starting from (R)-methyl lactate and employing
cross metathesis, asymmetric dihydroxylation, and
spiroketalization as the key steps. The synthesis is com-
pleted in nine steps and overall yields of 6.3% and 3.5%
for 2 and 3, respectively.
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