STUDIES IN THE IMIDAZOLE SERIES

LVI.* SOME NUCLEOPHILIC SUBSTITUTION REACTIONS

OF 4(5)-NITRO-5(4)-CHLORO(BROMO)IMIDAZOLES

P. M. Kochergin, A. M. Tsyganova, V. S. Shilikhunova, and M. A. Klykov

UDC 547.781.4.5.07

Reaction of the appropriate 4(5)-nitro-5(4)-chloro(bromo)imidazole with potassium iodide, sodium hydroxide, sodium alcoholates, and secondary amines yielded 1-alkyl- and 1,2-dialkyl-4-nitro-5-iodo-, 2-alkyl-4(5)-nitro-5(4)-iodo-, 1-alkyl- and 1,2-dialkyl-4-nitro-5-hydroxy-, 2-alkyl-4(5)-nitro-5(4)-hydroxy-, 1-alkyl- and 1,2-dialkyl-4-nitro-5-alkoxy-, 2-alkyl-4(5)-nitro-5(4)-alkoxy-, 1-alkyl-4-dialkylamino-5-nitro-, and 1-alkyl-4,5-bis(dialkylamino)imidazoles.

In a continuation of our research [2-5], we have studied the reactions of 1-alkyl- and 1,2-dialkyl-4-nitro-5-chloroimidazoles [6], 2-alkyl-4(5)-nitro-5(4)-bromo- and 1,2-dialkyl-4-nitro-5-bromoimidazoles [7] with potassium iodide, sodium hydroxide, and sodium alkoxides; the corresponding 4-nitro-5-iodoimidazoles (I-V) (Table 1), 4-nitro-5-hydroxyimidazoles (stable only in the form of their sodium salts, VI-X), and 4-nitro-5-alkoxyimidazoles (XI-XVIII) were obtained.

X=CI, Br; R=H, Aik; R'=H, Aik; R''=Aik

In the synthesis of 1,2-dimethyl-4-nitro-5-iodoimidazole (III) it was demonstrated that 1,2-dialkyl-4-nitro-5-iodoimidazoles can also be obtained by the alkylation of 2-alkyl-4(5)-nitro-5(4)-iodoimidazoles (for example, II) with alkyl halides or dialkyl sulfates in alkaline media.

The above methods for the synthesis of 4-nitro-5-iodoimidazoles [8] and 4-nitro-5-hydroxyimidazoles which were already briefly reported in [9], are simpler than known methods for the preparation of 4(5)-nitro-5(4)-iodoimidazoles [10] by treatment of 4,5-diiodoimidazoles with a mixture of nitric and sulfuric acids and of 4-nitro-5-hydroxyimidazoles [11] by heating 1-alkyl-4-nitro-5-chloroimidazoles with potassium arsenite in ethanol.

Prior to our brief publications [9, 12], 4(5)-nitro-5(4)-alkoxyimidazoles were unknown. Two compounds of this series, obtained by the reaction of 1,2-dimethyl-4-bromo-5-nitroimidazole with sodium methoxide and ethoxide, were described only recently [13].

^{*}See [1] for communication LV.

S. Ordzhonikidze All-Union Scientific-Research Pharmaceutical-Chemistry Institute, Moscow. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 5, pp. 689-692, May, 1971. Original article submitted February 27, 1970.

^{© 1973} Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York, N. Y. 10011. All rights reserved. This article cannot be reproduced for any purpose whatsoever without permission of the publisher. A copy of this article is available from the publisher for \$15.00.

TABLE 1. 4-Nitro-5-iodo (hydroxy, alkoxy, N-heteryl) imidazoles

Yield, ϕ_o'		838—83 806 807 807 808 808 808 809 809 809 809 809
Found, % Calculated, %	н	500.2 500.2 445.2 45.2 7,7
	z	16.6 16.6 15.8 15.8 18.2 18.2 18.7 22.7 22.7 22.7 22.7 24.5 19.1 19.1 19.1 26.6 26.6 26.6 26.6 26.6 26.6 26.6 26
	н	
	C	19.0 19.0 19.0 225.5 225.5 225.5 227.9 207.9 207
	peri	49.6 50,00 47.5 45.2 41,9
	z	1044 4.61 6.44 6.44 6.64
	Н	
	Ú	0.000
Empirical formula		C.H.IN.302 C.H.IN.302 C.H.IN.302 C.H.IN.302 C.H.IN.303 C.H.IN.303 C.H.IN.303 C.H.IN.303 C.H.IN.303 C.H.IN.303 C.H.IN.303 C.H.IN.303 C.H.IN.303 C.H.IN.303 C.H.IN.304
	(decomb)	236—237 244—245 199—200 196—197 196—197 245—246 245—246 134—135 65—66 65—66 65—66 169—170 103—104 103 103—104 103 103 103 103 103 103 103 103 103 103
	R″	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	Ř,	######################################
	æ	CH. CH. CH. CH. CH. CH. CH. CH.
	Comp.	

 $^{\mathrm{a}}_{\mathrm{D1-Piperidino.}}$ $^{\mathrm{b1-Piperidino.}}$ $^{\mathrm{c}}_{\mathrm{4-Morpholino.}}$

The reaction of 1-methyl-4-chloro-5-nitroimidazole [6] with secondary amines (pyrrolidine, piperidine, and morpholine), in contrast to the reaction of this compound [2] and 1,2-dialkyl-4-chloro(bromo)-5-nitroimidazoles [2, 13] with ammonia and primary amines, proceeds extremely energetically. When the reaction is carried out in ethanol with cooling (18-20°), 1-methyl-4-N-heteryl-5-nitroimidazoles (XIX-XXI, Table 1) are obtained. Under more severe conditions (70-80°), the nitro group and the chlorine atom are replaced by amine residues to give the corresponding 1-methyl-4,5-di(N-heteryl)imidazoles (XXII and XXIII). These compounds can also be obtained by the reaction of 1-methyl-4-N-heteryl-5-nitroimidazoles by heating with secondary amines. Thus, XXIII was synthesized from XXI.

 R_2NH = pyrrolidine, piperidine, morpholine

EXPERIMENTAL

Nitroimidazoles (I-V, Table 1). A. A mixture of 0.02 mole of nitrochloro (bromo)imidazole and 0.06 mole of KI in 50 ml of dimethylformamide was refluxed for 3-5 h, the solvent was removed by vacuum distillation, and the residue was washed with water and crystallized from acetone (I and IV) or water (II, III, and V).

- B. A mixture of 1.26 g (0.005 mole) of II, 1.6 g (0.009 mole) of methyl iodide, 6 ml of 1 N NaOH, and 20 ml of methanol was refluxed for 6 h, the solvent was removed by distillation, and the residue was washed with water to give 1.1 g (83%) of III with mp $199-200^{\circ}$ (from water).
- C. A mixture of 1.26 g (0.005 mole) of II, 0.7 g (0.006 mole) of dimethyl sulfate, 11 ml of 1 N NaOH, and 9 ml of water was heated and worked up as described in B to give 0.5 g (38%) of III with mp $199-200^{\circ}$ (from water).

Sodium Salts of Nitrohydroxyimidazoles (VI-X). A solution of 0.02 mole of nitrochloro(bromo)imidazole and 0.04 mole of NaOH in 50-100 ml of 50% methanol was refluxed for 3-5 h, the solvent was removed by vacuum distillation, and the residue was washed with a small amount of water and crystallized from water. In view of its very high solubility in water, IX was separated from NaCl by refluxing in ethanol, filtration from the undissolved NaCl, and vacuum evaporation of the solution. In the preparation of VII, 0.06 mole of NaOH was used per 0.02 mole of 2-methyl-4(5)-nitro-5-(4)-bromoimidazole. The yellow or orange crystalline substances, which were soluble in water and lower alcohols and insoluble in acetone, darkened immediately on acidification of the aqueous solutions.

Nitroalkoxyimidazoles (XI-XVIII). The nitrochloro (bromo) imidazole (0.05 mole) was added to a solution of the sodium alkoxide, prepared from 0.05 g-atom of sodium and 100 ml of the anhydrous alcohol, and the solution was refluxed for 5 h and filtered. The solvent was removed by vacuum distillation, and the residue was washed with water and crystallized from methanol (XI), 50% ethanol (XIII), acetone (XV), ether (XVII), or from water (XII, XIV, and XVIII). In the preparation of XI-XIII, 0.1 mole of sodium alkoxide was used per 0.05 mole of 2-methyl-4(5)-nitro-5(4)-bromoimidazole and, after completion of the reaction and removal of the solvent by distillation, the sodium salts of XI-XIII were dissolved in water and acidified with acetic acid to pH 4-5.

1-Methyl-4-pyrrolidino (piperidino, morpholino)-5-nitroimidazoles (XIX-XXI). A total of 0.18 mole of pyrrolidine, piperidine, or morpholine was added with cooling and stirring to a solution of 0.06 mole of 1-methyl-4-chloro-5-nitroimidazole in 150 ml of absolute ethanol. The solution was stirred at 18-20° for 4 h, allowed to stand overnight, and the solvent was removed by vacuum distillation at no higher than 20°. The resulting orange crystals were washed with water and crystallized from ethanol (XIX and XX) or water (XXI).

1-Methyl-4,5-dipiperidinoimidazole (XXII). Piperidine [13.8 g (0.16 mole)] was added with cooling to a solution of 6.45 g (0.04 mole) of 1-methyl-4-chloro-5-nitroimidazole in 25 ml of absolute ethanol. The reaction mass was refluxed for 5.5 h, cooled to 0°, and filtered away from the precipitate of piperidine hydrochloride. The solvent and excess piperidine were removed from the filtrate by vacuum distillation, and the dark-brown residue was dissolved in chloroform. The solution was washed with water and dried over sodium sulfate, and the solvent was removed by vacuum distillation to give 8.7 g (87%) of impure XXII. The product was a viscous liquid with bp 84° (4 mm) which was soluble in water and organic solvents. The picrate had mp 173-174° (decomp., from ethanol). Found %: C 50.7; H 5.9; N 20.5. $C_{14}H_{24}N_4 \cdot C_6H_3N_3O_7$. Calculated %: C 50.3; H 5.7; N 20.5.

1-Methyl-4,5-dimorpholinoimidazole (XXIII). A. Morpholine [15.6 g (0.18 mole)] was added with cooling to a solution of 9.66 g (0.06 mole) of 1-methyl-4-chloro-5-nitroimidazole and 30 ml of anhydrous ethanol. The mixture was refluxed and worked up as described for the preparation of XXII. The darkbrown liquid remaining after removal of the chloroform by distillation was cooled, and the resulting precipitate was filtered, washed with ether, ethyl acetate, and ether to give 4.2 g (32%) of the hydrate of base XXIII with mp 72-73° (from ether). Found %: C 53.3; H 7.8; N 20.6. $C_{12}H_{20}N_4O_2 \cdot H_2O$. Calculated %: C 53.3; H 8.2; N 20.7. Anhydrous base XXIII with mp 116-117° was obtained by drying the hydrate in a vacuum desiccator over sulfuric acid. Found %: C 57.0; H 8.0; N 22.5. $C_{12}H_{20}N_4O_2$. Calculated %: C 57.1; H 8.0; N 22.2. The hydrochloride had mp 212-213° (decomp., purified by reprecipitation from absolute ethanol with ether). Found %: C1 12.5. $C_{12}H_{20}N_4O_2 \cdot C_6H_3N_3O_7$. Calculated %: C1 12.3. The picrate had mp 177-178° (from water). Found %: N 20.0. $C_{12}H_{20}N_4O_2 \cdot C_6H_3N_3O_7$. Calculated %: N 20.4.

B. A mixture of 2.1 g (0.01 mole) of XXI and 2.8 g (0.032 mole) of morpholine in 15 ml of anhydrous ethanol was refluxed for 2.5 h and worked up as in experiment A to give 2.1 g (60%) of base XXIII with mp 72-73° (from ether).

LITERATURE CITED

- A.A. Tkachenko, P. M. Kochergin, and G. F. Panchenko, Khim. Geterotsikl. Soedin., 684 (1971).
- 2. P. M. Kochergin and S. G. Verenikina, Khim. Geterotsikl. Soedin., 765, 770 (1965).
- 3. P. M. Kochergin, Khim. Geterotsikl. Soedin., 749 (1966).
- 4. P. M. Kochergin and É. A. Bashkir, Khim. Geterotsikl. Soedin., 754, 762 (1966).
- 5. P. M. Kochergin, A. M. Tsyganova, L. M. Viktorova, and E. M. Peresleni, Khim. Geterotsikl. Soedin., No. 1, 126 (1967).
- 6. P. M. Kochergin, Khim. Geterotsikl. Soedin., 761 (1965).
- 7. P. M. Kochergin, A. M. Tsyganova, and V. A. Shlikhunova, Khim.-Farmats. Zh., No. 10, 22 (1968).
- 8. P. M. Kochergin and M. A. Klykov, USSR Author's Certificate No. 230,825 (1968); Byull. Izobr., No. 35, 21 (1968).
- 9. P. M. Kochergin, A. M. Tsyganova, V. S. Shlikhunova, and M. A. Klykov, Summary of Papers Presented at the Third All-Union Conference on the Chemistry of Nitro Compounds [in Russian], Moscow (1968), p. 42.
- 10. M. Hoffer, V. Toome, and A. Brossi, J. Heter. Chem., 3, 454 (1966).
- 11. I. E. Balaban, J. Chem. Soc., 569 (1926).
- 12. P. M. Kochergin, A. M. Tsyganova, and V. A. Shlikhunova, USSR Author's Certificate No. 322,267 (1968); Byull. Izobr., No. 1, 28 (1969).
- 13. V. Sanjic, T. Fajidiga, M. Japeli, and P. Rems, J. Heter. Chem., 6, 53 (1969).