

Journal of Coordination Chemistry

ISSN: 0095-8972 (Print) 1029-0389 (Online) Journal homepage: https://www.tandfonline.com/loi/gcoo20

Synthesis, characterization, and structures of zinc(II) and cadmium(II) complexes with phosphoramides bearing cyclic amino groups

Mohamed M'haiham, Khaled Ebeid, Fatimetou Ebnou, Cameron L. Carpenter-Warren, Alexandra M. Z. Slawin, John Derek Woollins, Med Taieb Ben Dhia & Med Abderrahmane K. Sanhoury

To cite this article: Mohamed M'haiham, Khaled Ebeid, Fatimetou Ebnou, Cameron L. Carpenter-Warren, Alexandra M. Z. Slawin, John Derek Woollins, Med Taieb Ben Dhia & Med Abderrahmane K. Sanhoury (2020): Synthesis, characterization, and structures of zinc(II) and cadmium(II) complexes with phosphoramides bearing cyclic amino groups, Journal of Coordination Chemistry, DOI: 10.1080/00958972.2020.1731485

To link to this article: https://doi.org/10.1080/00958972.2020.1731485

Published online: 28 Feb 2020.

-	
	14
L.	v 1
_	

Submit your article to this journal 🗹

View related articles 🗹

View Crossmark data 🗹

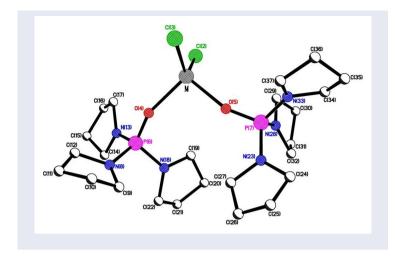
Check for updates

Synthesis, characterization, and structures of zinc(II) and cadmium(II) complexes with phosphoramides bearing cyclic amino groups

Mohamed M'haiham^{a,b}, Khaled Ebeid^a, Fatimetou Ebnou^a, Cameron L. Carpenter-Warren^c, Alexandra M. Z. Slawin^c, John Derek Woollins^d, Med Taieb Ben Dhia^b and Med Abderrahmane K. Sanhoury^{a,b}

^aDepartment of Chemistry, Research Unit in Materials Chemistry, Faculty of Sciences and Techniques, UNA, Nouakchott, Mauritania; ^bLaboratory of Structural Organic Chemistry: Synthesis and Physicochemical Studies, Department of Chemistry, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia; ^cEaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife, UK; ^dKhalifa University, Abu Dhabi, UAE

ABSTRACT


Twelve new zinc(II) and cadmium(II) complexes with symmetric ligands, $[MCl_2((R_2N)_3PO)_2]$ $(M = Zn, R_2N = pyrrolidinyl$ (1), piperidinyl (2); M = Cd, $R_2N = pyrrolidinyl$ (3), piperidinyl (4)), and differently substituted ligands of the general formula $[MCl_2(R_2N)PO(R'_2N)_2]$ (M = Zn or Cd; $R_2N = Pyrr$, Pip or Mor; $R'_2N = Pyrr$, Pip or Mor (5-12) have been synthesized from reaction of zinc(II) or cadmium(II) chlorides with the ligands, giving yields of 43-76%. The complexes were characterized with multinuclear (¹H, ¹³C and ³¹P) NMR, conductivity, IR spectroscopy, and X-ray analyses. Complexes 1, 3, 11, and 12 are comprised of two ligands coordinated to the metal center in a distorted monomeric tetrahedral arrangement. The P = O bond lengths of 1.490(3) (1), 1.497(4) (3), 1.480(4) (11), and 1.479(5) Å (12) are in the order observed for analogous phosphoramide complexes. The results are compared with those reported for related chalcogen counterparts.

ARTICLE HISTORY

Received 7 October 2019 Accepted 3 February 2020

KEYWORDS

Phosphoramides; zinc(II); cadmium(II); metal complex; NMR; X-ray analysis

1. Introduction

Phosphoramides increasingly attract attention due to their potential applications in industry as flame retardants, in medicine as prodrugs, in catalysis and synthesis as chiral ligands [1, 2], as well as their ease of preparation, high solubility, and good reactivity toward different metal ions in many organic solvents [3–11]. The properties depend largely on the nature of substituents on the phosphorus [12]. In addition, studies into the coordination chemistry of phosphine chalcogenides R_3PE (E=O, S, Se, and Te) toward the same metal would be very informative as to the nature of metal-ligand interactions upon complex formation [13] as well as to the stereochemistry and nuclearity of the resulting complexes [14].

In this context, we have recently described the synthesis and characterization of tetrahedral metal complexes derived from bidentate piperidine containing ligands MeN(Pip₂PE)₂ (Pip = piperidinyl, E = S or Se) [15] and from monodentate phosphine chalcogenides n-Bu₃PE (E = O, S, or Se) [16]. In all these compounds, the isolated complexes exist as monomeric species. In contrast, we have shown more recently that when the ligands Pip_3PE (E = S or Se) were used, the nuclearity changed and dimers with Hg(II), Cd(II), and even Zn(II) were produced [17]. This was tentatively interpreted in terms of the presence of both the bulkier chalcogen atoms and the three piperidinyl groups in the monodentate ligand. Inspired by these results, we decided to synthesize the corresponding oxide analogues with phosphoramide ligands bearing different cyclic amino moieties including pyrrolidinyl (Pyrr), piperidinyl (Pip), and morpholinyl (Mor) groups. We were particularly interested to see how the chalcogen nature would affect the nuclearity of such complexes. The present work reports on the synthesis and characterization of new zinc(II) and cadmium(II) chloride complexes with phosphoramides (R_2N) 3PO $(R_2N = Pyrr \text{ or Pip and } (R_2N)PO(R'_2N)_2 (R_2N = Pyrr \text{ or } P_2N)_2 (R_2N = Pyrr \text{ or }$ Pip; $R'_2N = Pyrr$ or Mor) using multinuclear (¹H, ¹³C, and ³¹P) NMR, IR spectroscopy, conductivity measurements, and X-ray analyses.

2. Experimental

2.1. General experimental procedures

Anhydrous zinc and cadmium chlorides (\geq 99.9%) and ethanol puriss (\geq 99.8%) were used as received from the commercial supplier (SIGMA-ALDRICH). All preparations were carried out under nitrogen in solvents dried by standard techniques [18] and stored over molecular sieves.

2.2. Instrumentation

All NMR spectra were recorded on a Bruker AC-300 instrument in CDCl₃ as solvent, ³¹P at 121 (85% H_3PO_4), ¹H at 300, and ¹³C at 75.4 MHz. IR spectra were obtained using a YL 2000 FT-IR spectrometer. The conductivity measurements were carried out for 10^{-3} M solutions of the complexes dissolved in dichloromethane (dried on molecular sieves). Phosphoramides were prepared and purified by vacuum distillation before use according to methods described [19–21].

2.3. General procedure for the preparation of variously substituted phosphoramide ligands $R_2NP(O)(R_2N)_2$ (R_2N or $R_2N = Pip$, Mor, or Pyrr)

The phosphoramides $R_2NP(O)(R_2N)_2$ were prepared in two steps. The first step is the addition of two equivalents of the first amine (R_2NH) in anhydrous diethyl ether to a cooled solution (0 °C) of one equivalent of phosphoryl oxychloride (POCl₃) in the same solvent. The reaction mixture was stirred overnight at room temperature. The ammonium salt was filtered off, solvent evaporated *in vacuo* and the residue was purified by distillation to give the intermediate dichlorides, $R_2NP(O)Cl_2$. Four equivs of the second amine (R_2NH), in diethyl ether, were then added to a cooled solution of $R_2NP(O)Cl_2$ in the same solvent. The workup was the same as in the first step. The crude materials were viscous liquids for PyrrP(O)Pip₂, PipP(O)Pyrr₂ and MorP(O)Pyrr₂, which were stirred at 100 °C over CaH₂ for 12 h and then purified by vacuum distillation, while the resulting solid residue PyrrP(O)Mor₂ was purified by recrystallization in toluene or vacuum distillation. The purity of these compounds was checked by their ³¹P and ¹H NMR spectra.

2.3.1. PipP(O)Pyrr₂

Yield = 69%; b.p. = 135 °C/0.5 mmHg; ¹H NMR (300 MHz, CDCl₃), δ (ppm): 2.8 (m, 12H), 1.4 (m, 8H), 1.2 (m, 6H); $\nu_{(P=O)} = 1223$ cm⁻¹.

2.3.2. PyrrP(O)Pip2

Yield = 45%; b.p. = 138 °C/0.5 mmHg; ¹H NMR (300 MHz, CDCl₃), δ (ppm): 3.1 (m, 12H), 1.8 (m, 4H), 1.5 (m, 12H); $\nu_{(P=O)} = 1232 \text{ cm}^{-1}$.

2.3.3. MorP(O)Pyrr2

Yield = 80%; b.p. = 150 °C/0.5 mmHg; ¹H NMR (300 MHz, CDCl₃), δ (ppm): 3.9 (m, 4H), 3.5 (m, 12H), 2.2 (m, 8H); $\nu_{(P=O)} = 1228 \text{ cm}^{-1}$.

2.3.4. PyrrP(O)Mor2

Yield = 37%; 163 °C/0.5 mmHg ¹H NMR (300 MHz, CDCl₃), δ (ppm): 3.5 (m, 8H), 3.1 (m, 12H), 1.7 (m, 4H); $\nu_{(P=O)} = 1269 \text{ cm}^{-1}$.

2.4. General procedure for the preparation of 1-12

To a solution of metal chloride (1 mmol) in ethanol (20 mL) was added the ligand (2 mmol) in anhydrous dichloromethane (5 mL). The reaction mixture was stirred at room temperature for 2 h and concentrated *in vacuo*. Addition of dry diethyl ether led to precipitation of the complex, which was washed with the same solvent and vacuum dried for several hours.

2.4.1. [ZnCl2(Pyrr3PO)2] (1)

Yield = 0.30 g (45%); m. p. = 151 °C; Anal. Calcd for C₂₄H₄₈Cl₂N₆O₂P₂Zn: H, 7.43; C, 44.29; N, 12.91% found: H, 7.52; C, 44.01; N, 12.48%; ¹H NMR (300 MHz, CDCl₃), δ (ppm): 3.20 (m, 12H), 1.80 (m, 12H); IR: 2979, 2881, 1462, 1348, 1251, 1211 (ν P=O), 1161, 1133, 1093, 1017, 917, 873, 770, 588, 538 cm⁻¹; Λ_M (Ω ⁻¹cm² mol⁻¹) = 9.73.

2.4.2. [ZnCl2(Pip3PO)2] (2)

Yield = 0.40 g (55%); m. p. = 206 °C; Anal. Calcd for $C_{30}H_{60}Cl_2N_6O_2P_2Zn$: H, 8.23; C, 49.02; N, 11.44% found: H, 8.86; C, 48.77; N, 11.09%; ¹H NMR (300 MHz, CDCl₃), δ (ppm): 3.00 (m, 12H), 1.40 (m, 18H); IR: 2941, 2860, 1454, 1376, 1342, 1214 (ν P = O), 1169, 1123, 1074, 1030, 959, 857, 698, 584 cm⁻¹; Λ_M (Ω^{-1} cm² mol⁻¹) = 6.22.

2.4.3. [CdCl2(Pyrr3PO)2] (3)

Yield = 0.49 g (70%). m. p. = 131 °C. Anal. Calcd for C₂₄H₄₈CdCl₂N₆O₂P₂: H, 6.93; C, 41.30; N, 12.04% found: H, 7.08; C, 41.11; N, 11.84%; ¹H NMR (300 MHz, CDCl₃), δ (ppm): 3.10 (m, 12H), 1.70 (m, 12H); IR: 2967, 2864, 1452, 1346, 1245, 1206 (ν P = O), 1141, 1086, 1014, 915, 872, 767, 588 cm⁻¹. $\Lambda_{\rm M}$ (Ω^{-1} cm² mol⁻¹) = 4.25.

2.4.4. [CdCl2(Pip3PO)2] (4)

Yield = 0.46 g (60%); Anal. Calcd for $C_{30}H_{60}CdCl_2N_6O_2P_2$: H, 7.73; C, 46.07; N, 10.75% found: H, 7.85; C, 45.93; N, 10.56%; Λ_M ($\Omega^{-1}cm^2$ mol⁻¹) = 1.98.

2.4.5. [ZnCl2(MorP(O)Pyrr2)2] (5)

Yield = 0.52 g (76%); m. p. = 150 °C. Anal. Calcd for C₂₄H₄₈Cl₂N₆O₄P₂Zn: H, 7.08; C, 42.21; N, 12.32% found: H, 7.21; C, 42.08; N, 12.42%; ¹H NMR (300 MHz, CDCl₃), δ (ppm): 3.70 (m, 4H), 3.20 (m, 12H), 1.80 (m, 8H); IR: 2975, 2858, 2187, 1452, 1265, 1211 (ν P = O), 1165, 1085, 1023, 969, 909, 709, 584 cm⁻¹; Λ_M (Ω ⁻¹cm² mol⁻¹) = 5.53.

2.4.6. [ZnCl2(PipP(O)Pyrr2)2] (6)

Yield = 0.38 g (56%); m. p. = 150 °C; Anal. Calcd for C₂₆H₅₂Cl₂N₆O₂P₂Zn: H, 7.72; C, 45.99; N, 12.38% found: H, 7.87; C, 46.13; N, 12.52%; ¹H NMR (300 MHz, CDCl₃), δ (ppm): 3.52 (m, 12H), 1.87 (m, 8H), 1.32 (m, 6H); IR: 2949, 2867, 2195, 1452, 1336, 1219 (ν P = O), 1148, 1195, 1013, 960, 763, 709, 573 cm⁻¹; Λ_{M} (Ω^{-1} cm² mol⁻¹) = 9.12.

2.4.7. [ZnCl2(PyrrP(O)Mor2)2] (7)

Yield = 0.52 g (73%); m. p. = 100 °C; Anal. Calcd for $C_{24}H_{48}Cl_2N_6O_6P_2Zn$: H, 6.77; C, 40.32; N, 11.76% found: H, 6.83; C, 40.57; N, 11.89%; ¹H NMR (300 MHz, CDCl₃), δ (ppm): 3.70 (m, 8H), 3.22 (m, 12H), 1.91 (m, 4H); IR: 2957, 2853, 1450, 1352, 1298, 1257, 1205 (ν P = O), 1133, 1109, 1018, 962, 915, 726, 684, 607, 543, 476 cm⁻¹; Λ_M (Ω^{-1} cm² mol⁻¹) = 1.36.

2.4.8. [ZnCl2(PyrrP(O)Pip2)2] (8)

Yield = 0.50 g (71%); Anal. Calcd for C₂₈H₅₆Cl₂N₆O₂P₂Zn: H, 7.98; C, 47.57; N, 11.89% found: H, 8.13; C, 47.63; N, 11.95%; ¹H NMR (300 MHz, CDCl₃), δ (ppm): 3.20 (m, 12H), 1.90 (m, 4H), 1.60 (m, 12H); $\Lambda_{\rm M}$ (Ω⁻¹cm² mol⁻¹) = 11.85.

2.4.9. [CdCl2(MorP(O)Pyrr2)2] (9)

Yield = 0.49 g (67%); m. p. = 135 °C; Anal. Calcd for $C_{24}H_{48}CdCl_2N_6O_4P_2$: H, 6.63; C, 39.49; N, 11.51% found: H, 6.72; C, 39.83; N, %; ¹H NMR (300 MHz, CDCl₃), δ (ppm): 3.66 (m, 4H), 3.18 (m, 12H), 1.85 (m, 8H); IR: 2956, 2860, 1450, 1343, 1295, 1253, 1208 (ν P = O), 1169, 1135, 1111, 1089, 1016, 969, 915, 870, 757, 702, 584, 487 cm⁻¹; Λ_M (Ω^{-1} cm² mol⁻¹) = 1.51.

2.4.10. [CdCl2(PipP(O)Pyrr2)2] (10)

Yield = 0.50 g (69%); m. p. = 102 °C; Anal. Calcd for C₂₆H₅₂CdCl₂N₆O₂P₂: H, 7.22; C, 43.01; N, 11.58% found: H, 7.31; C, 43.46; N, 11.67%; ¹H NMR (300 MHz, CDCl₃), δ (ppm): 3.18 (m, 12H), 1.85 (m, 8H), 1.55 (m, 6H); IR: 2938, 2856, 1447, 1339, 1206 (ν P = O), 1142, 1081, 1014, 957, 698, 584 cm⁻¹; $\Lambda_{\rm M}$ (Ω^{-1} cm² mol⁻¹) = 4.98.

2.4.11. [CdCl2(PyrrP(O)Mor2)2] (11)

Yield = 0.34 g (43%); m. p. = 150 °C; Anal. Calcd for C₂₄H₄₈CdCl₂N₆O₆P₂: H, 6.35; C, 37.83; N, 11.03% found: H, 6.64; C, 38.12; N, 11.35%; ¹H NMR (300 MHz, CDCl₃), δ (ppm): 3.68 (m, 8H), 3.18 (m, 12H), 1.88 (m, 4H); Λ_M (Ω⁻¹cm² mol⁻¹) = 5.80.

2.4.12. [CdCl2(PyrrP(O)Pip2)2] (12)

Yield = 0.43 g (54%); Anal. Calcd for C₂₈H₅₆CdCl₂N₆O₂P₂: H, 7.49; C, 44.60; N, 11.15% found: H, 7.53; C, 44.77; N, 11.27%; ¹H NMR (300 MHz, CDCl₃), δ (ppm): 3.22 (m, 12H), 1.86 (m, 4H), 1.58 (m, 12H); $\Lambda_{\rm M}$ (Ω⁻¹cm² mol⁻¹) = 11.12.

2.5. X-ray structural details

X-ray analyses for **1** and **12** were carried out at 173 K Rigaku SCXmini CCD diffractometer with a SHINE monochromator [Mo K α radiation ($\lambda = 0.71075$ Å)]. Data for **2** were collected at 125 K using the St Andrews Automated Robotic Diffractometer (STANDARD) [22], consisting of a Rigaku sealed-tube generator, equipped with a SHINE monochromator [Mo K α radiation ($\lambda = 0.71075$ Å)], and a Saturn 724 CCD area detector, coupled with a Microglide goniometer head and an ACTOR SM robotic sample changer. Data for **3** were collected at 125 K using a Rigaku MM-007HF High Brilliance RA generator/confocal optics with XtaLAB P200 diffractometer [Cu K α

6 🕢 M. M'HAIHAM ET AL.

	1	3	11	12
Empirical formula	$C_{24}H_{48}Cl_2N_6O_2P_2Zn$	$C_{24}H_{48}CdCl_2N_6O_2P_2$	$C_{24}H_{48}CdCl_2N_6O_4P_2$	C ₂₈ H ₅₆ CdCl ₂ N ₆ O ₂ P ₂
Formula weight	650.92	697.95	761.92	754.02
Crystal color, Habit	Colorless, Prism	Colorless, Prism	Colorless, Prism	Colorless, Prism
Crystal dimensions (mm)	$0.30 \times 0.17 \times 0.15$	$0.15 \times 0.06 \times 0.06$	$0.15 \times 0.15 \times 0.15$	$0.23 \times 0.18 \times 0.15$
Crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space group	P 21/c	P 2 ₁ /c	C 2/c	C 2/c
a (Å)	13.8006(9)	13.9491(4)	13.7860(3)	13.7783(10)
b (Å)	12.7723(8)	12.8405(4)	14.2662(2)	14.2980(10)
c (Å)	17.7204(12)	17.8032(6)	17.3730(4)	17.4136(13)
B (°)	102.907(6)	103.658(3)	108.195(2)	108.112(5)
V (Å ³)	3044.6(4)	3098.62(17)	3245.97(12)	3260.5(4)
Ζ	4	4	4	4
Dcalc (g/cm ³)	1.420	1.496	1.559	1.536
F (0 0 0)	1376.0	1448.00	1576	1576
Data				
Goodness-of-fit on F ²	1.081	1.088	1.092	1.053
Final R indices (I > 2σ (I))	0.0545	0.0850	0.0517	0.0545
R indices (all data)	0.0717	0.0918	0.0554	0.0677
wR2	0.1596	0.2348	0.1576	0.1540

Table 1. Cr	ystal data,	data collection,	and refinement	parameters for	1, 3,	11, and	12.
-------------	-------------	------------------	----------------	----------------	-------	---------	-----

radiation ($\lambda = 1.54187$ Å)]. Data for **11** were collected at 173 K using a Rigaku FR-X Ultrahigh Brilliance Microfocus RA generator/confocal optics with XtaLAB P200 diffract-ometer [Mo K α radiation ($\lambda = 0.71075$ Å)].

For all compounds, intensity data were collected using ω steps accumulating area detector images spanning at least a hemisphere of reciprocal space. CrystalClear [23] was used to collect all data and to process **1** and **12**, whereas CrysAlisPro [24] was used to process **3** and **11**. All data were corrected for Lorentz and polarization effects. The CrystalStructure [25] interface was used during the refinement of **1** and **3**, and Olex2 [26] for **11** and **12**.

The crystal structures were all solved using dual space methods (SHELXT) [27] and refined using full matrix least square techniques (SHELEXT) [28]. All non-hydrogen atoms were refined anisotropically and hydrogens were placed geometrically using the riding model. Selected crystallographic data are presented in Table 1.

3. Results and discussion

3.1. Synthesis

The variously substituted phosphoramide ligands, $R_2NP(O)(R_2N)_2$, are new compounds and were prepared in two steps (Scheme 1). The first step is the addition of two equivalents of amine (R_2NH) to phosphoryl chloride (POCl₃) in diethyl ether. The second is the addition of four equivalents of the second amine (R_2NH) to the product obtained in the first step. The resulting compounds are all colorless viscous liquids except PyrrP(O)Mor₂, which is a light yellow sold.

The complexes [MCl₂L₂] were produced by reaction of zinc(II) or cadmium(II) chlorides in ethanol solution with the phosphoramide ligands (Scheme 2). These were purified by washing with anhydrous diethyl ether to give the pure complexes as white solids that are soluble in dichloromethane, chloroform, and nitromethane. To further confirm the adduct nature of these chloride complexes, their molar conductance in

$$Cl \longrightarrow P - Cl + 2HNR_{2} \xrightarrow{Et_{2}O} Cl \longrightarrow P - NR_{2} + R_{2}NH.HCl$$

$$R_{2}N = N , N \text{ or } O N$$

$$Cl \longrightarrow P - NR_{2} + 4HNR'_{2} \xrightarrow{Et_{2}O} R'_{2}N \xrightarrow{O} P - NR_{2} + 2R'_{2}NH.HCl$$

$$R_{2}N \text{ or } R'_{2}N = N , N \text{ or } O N$$

Scheme 1. Synthesis of differently substituted phosphoramides R₂NP(O)(NR₂)₂.

$$MCl_{2} + 2 (R_{2}N)_{n}P(O)(NR'_{2})_{3-n} \xrightarrow{EtOH} [MCl_{2}((R_{2}N)_{n}P(O)(NR'_{2})_{3-n})_{2}]$$

$$(M = Zn \text{ or } Cd, n = 0-3, R_{2}N \text{ and } R'_{2}N = N, M \text{ and/or } ON$$

Scheme 2. Synthesis of zinc(II) and cadmium(II) complexes 1–12.

dichloromethane (10^{-3} M) was measured and shows values in the range 1.36–11.85 Ω^{-1} cm²mol⁻¹. This indicates that these complexes are nonelectrolytes containing chloride ions with the general formula [L₂MCl₂], in good agreement with our previous results obtained with other related complexes [16, 17].

3.2. Spectroscopic characterization

The complexes were characterized by IR and multinuclear (¹H, ¹³C, and ³¹P) NMR spectroscopy. The IR spectra (Figure 1 and Table 2) show that the stretching vibration of the P = O band is shifted to lower frequencies compared to those of free ligands, consistent with ligand P = O bond weakening upon coordination to the metal center through the oxygen of this group. This shift is more pronounced for the cadmium adducts compared to the zinc complexes. For example, the shift $(\Delta \nu_{P=O})$ for Pyrr₃PO is 55 and 77 cm⁻¹ in Zn complex **1** and its Cd analog **2**, respectively. Such a difference could be explained in terms of steric hindrance which would favor stronger interaction with the larger Cd ion, leading to a more lengthened PO bond. Further confirmation comes from the much higher $\Delta \nu_{P=O}$ shift value (136 cm⁻¹) observed for the still larger metal atom in the corresponding uranium(IV) complex $[UCl_4(Pyrr_3PO)_2]$ [29]. These results seem to be in agreement with those reported for similar complexes [30, 31] and with our structural study discussed below. The ³¹P NMR spectra of the complexes were obtained at room temperature (Figure 2) and the data are listed in Table 2. The spectra show signals that are slightly shifted downfield compared to those of the free ligands, confirming the coordination of these ligands with zinc and cadmium through the P=O group. Despite the stronger donor ability of the phosphoramide ligands, the ³¹P NMR coordination chemical shift (Δ^{31} P) in **1-12** is less than 2 ppm while that of the zinc complex with a similar donor ability phosphine oxide ligand, [ZnCl₂(n- Bu_3PO_2 , is much larger (14 ppm) [16]. This could be explained by the presence of a nitrogen in the former ligands, which would compensate the loss of electron density

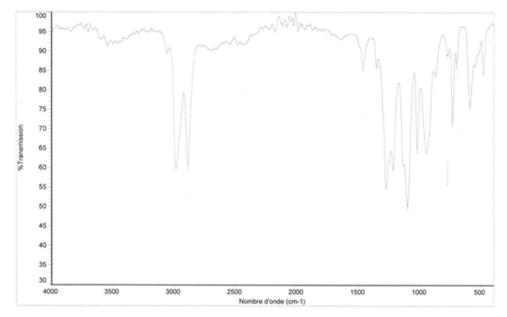
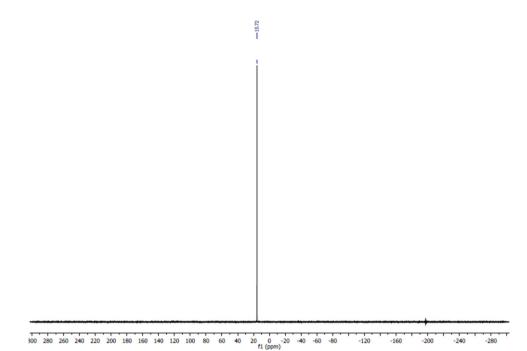


Figure 1. IR spectrum of 1 in CHCl₃.

		$^{31}P (\Delta \delta ^{31}P)^{a}$		ν _{P=0} (Δ	$(\Delta \nu_{P=0})^{b}$
Ligand (L)	L	$[ZnCl_2L_2]$ $[CdCl_2L_2]$	L	[ZnCl ₂ L ₂]	[CdCl ₂ L ₂]
Pyrr ₃ PO	14.20	15.72(1.52) 15.33(1.13)	1219	1161(58)	1142(77)
Pip ₃ PO	20.12	21.08(0.96) 21.01(0.89)	1228	1170(58)	
MorP(O)Pyrr ₂	15.49	16.77(1.28) 16.36(0.87)	1229	1157(72)	1169(60)
PipP(O)Pyrr ₂	16.23	17.45(1.22) 16.58(0.35)	1223	1148(75)	1143(80)
PyrrP(O)Mor ₂	16.47	17.55(1.08) 16.93(0.46)	1212	1159(53)	1113(99)
PyrrP(O)Pip ₂	18.44	18.53(0.09)	1232		

Table 2. ³¹P NMR (δ /ppm) and IR (v(P = O)/cm⁻¹) data for [MCl₂L₂] (1–12).


^a $\Delta(\delta^{31}P) = |\delta^{31}P$ (ligand) - $\delta^{31}P$ complex).

^b $\Delta \nu$ (P = O) = $|\nu$ (P = O)(ligand) - ν (P = O)(complex)|.

around the phosphorus upon coordination, thus resulting in a more reduced Δ^{31} P. These complexes were also characterized by their ¹H NMR spectra, which display relatively broader signals that are slightly downfield shifted compared to those of free ligands.

3.3. Structural study

In order to investigate the constitution of the complexes, as well as to gain insights on the effect of the nature of the ligand donor atom on the stereochemistry and nuclearity of these complexes, we examined the solid-state structure of [MCl₂L₂]. Complexes **1**, **3**, **11**, and **12** gave crystals suitable for X-ray analysis. However, the other complexes were not sufficiently crystalline, even after multiple recrystallization attempts. The geometries of **1**, **3**, **11**, and **12** (Figures 3–6) are similar monomeric species, two oxygens of the two ligands and two chlorides coordinate to the metal center, giving it a distorted tetrahedral geometry. In contrast, the corresponding Zn and Cd complexes containing the sulfur or selenium donor ligands, Pip₃PS and Pip₃PSe,

Figure 2. ³¹P NMR spectrum of 1 in CDCl₃ at 25 $^{\circ}$ C.

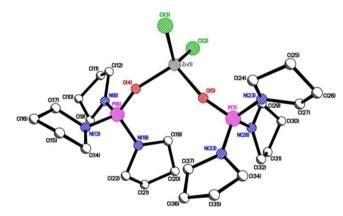
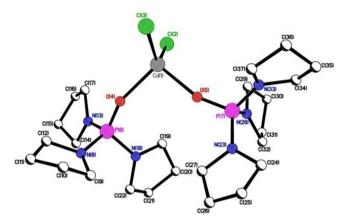



Figure 3. The X-ray crystal structure (asymmetric unit) of [ZnCl₂(Pyrr₃PO)₂] (1). All hydrogens have been omitted for clarity.

exist as chloride bridged dimeric forms [17], showing the effect of bulkier chalcogen atoms (S and Se) on the nuclearity of such complexes. Table 3 lists important bond lengths and angles. When comparing the P = O bond distances in the zinc complex **1** (1.490(3) Å) and Cd complex **3** (1.497(4) Å), we observed that they are similar to those of corresponding Co (1.489(1) Å) [32] and Mn (1.493(2) Å) [33] complexes [MCl₂(Pyrr₃PO)₂], but shorter than PO bond (1.515(7) Å) in the related uranium complex [UCl₄(Pyrr₃PO)₂] [29]. The P = O bond lengths are 1.491(3), 1.484(17), 1.492(4), 1.480(4) and 1.479(5) Å for **1**, **3**, **11**, and **12**, respectively. The average P = O bond distances are all shorter than the sum of the representative covalent radii of P and O, 10 🕢 M. M'HAIHAM ET AL.

Figure 4. The X-ray crystal structure (asymmetric unit) of $[CdCl_2(Pyrr_3PO)_2]$ (**3**). All hydrogens have been omitted for clarity.

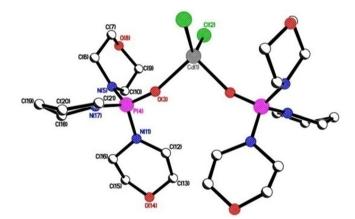


Figure 5. The X-ray crystal structure (one molecule) of $[CdCl_2(PyrrP(O)Mor_2)_2]$ (11). All hydrogens have been omitted for clarity.

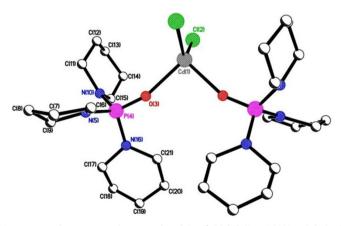


Figure 6. The X-ray crystal structure (one molecule) of $[CdCl_2(PyrrP(O)Pip_2)_2]$ (12). All hydrogens have been omitted for clarity.

	$[ZnCl_2(Pyrr_3PO)_2]$ (1)	$[CdCl_2(Pyrr_3PO)_2]$ (3)	$[CdCl_2(PyrrP(O)Mor_2)_2]$ (11)	$[CdCl_2(PyrrP(0)Pip_2)_2] (12)$
P1-01	1.490(3)	1.492(4)	1.480(4)	1.479(5)
P2-O2	1.489(3)	1.502(4)	1.480(4)	1.479(5)
P1-N1	1.631(3)	1.628(5)	1.636(4)	1.624(6)
P2-N2	1.625(4)	1.630(5)	1.618(4)	1.634(6)
M-Cl1	2.244(10)	2.417(14)	2.382(13)	2.386(17)
M-Cl2	2.232(10)	2.403(15)	2.382(13)	2.386(17)
M-01	1.962(3)	2.173(4)	2.158(4)	2.156(4)
M-02	1.953(3)	2.153(4)	2.158(4)	2.156(4)
M-01-P1	157.17(18)	155.6(3)	156.4(3)	157.0(4)
M-02-P2	162.4(2)	158.2(3)	156.4(3)	157.0(4)
01-M-Cl1	107.20(8)	103.57(12)	106.99(14)	107.05(17)
02-M-Cl2	112.20(9)	111.83(12)	112.13(15)	111.66(18)
CI1-M-CI2	117.51(4)	121.69(5)	121.54(9)	121.89(11)
01-M-02	102.45(11)	98.23(16)	93.6(3)	94.0(4)
01-P1-N1	108.23(17)	108.4(3)	108.6(3)	108.6(3)

Table 3. Selected bond lengths and angles for 1, 3, 11, and 12.

implying some retention of π bonding in the complex. However, these P = O distances are longer than those observed in the free ligands [34, 35]. This indicates that the P = O bond is weakened upon complex formation with the singly bonded structure becoming more pronounced with stronger donor ligands, in agreement with the order obtained from our IR and NMR data for the magnitude of metal-ligand interaction and with other related results [36]. These are also longer than the sum of covalent radii for representative single P-O bond but much shorter than the sum of van der Waals radii [37]. The structures of these complexes reveal that the average P-O-Zn angle is 157.17(18)-162.4(2)° for 1, while that of P-O-Cd is 155.6(3)-158.2(3) for 3, 156.4(3)° for **11** and 157.0(4) for **12**. All these angles (151.2–158.2°) are similar to those of Co (156.20(7)°) and Mn (158.9(1)°) analogs [32, 33], but much more axial than those in the corresponding S and Se analogs, which display more bent angles (less than 109°) [17]. This indicates that **1-12** could be classified as σ -donors, employing P-O σ -non-bonding electrons (lone pairs) for donation, rather than π -bonding electrons used for coordination in analogous S and Se derivatives [17], consistent with the bonding model proposed by Burford et al. [38]. The M-O bonds show distances of 1.930(14) to 1.962(3) Å for zinc complexes and 2.153(4) to 2.173(4) Å for the cadmium derivatives (Table 3). The average P-N distances in the complexes vary from 1.618(4) to 1.636(4) for 11, which are shorter than in corresponding ligands [34, 36]. Finally, the M-Cl bond distances (2.169(7)-2.417(14) Å) are also shorter than the sum of corresponding covalent radii.

The degrees of tetrahedral distortion [39] in these complexes, calculated using PLATON, are 0.92, 0.89, 0.90, and 0.90 for **1**, **3**, **11**, and **12**, respectively. This suggests that the coordination around the metal center is almost a perfect tetrahedron. The pyrrolidine ligands in **1** adopt a twisted conformation, except for the N13-C17 ring which exhibits an envelope conformation on C15.

Molecular packing arrangements for **1**, **3**, **11**, and **12** are shown in Figure 7. The molecules in all four of the structures arrange themselves into sheets in the [110] plane and stack in discrete columns down the [110] and [-110] crystallographic axes. All four of the structures possess intermolecular C-H…Cl interactions: In **1**, Cl3 interacts with the adjacent molecules in two neighboring columns, along the *c* and [110]

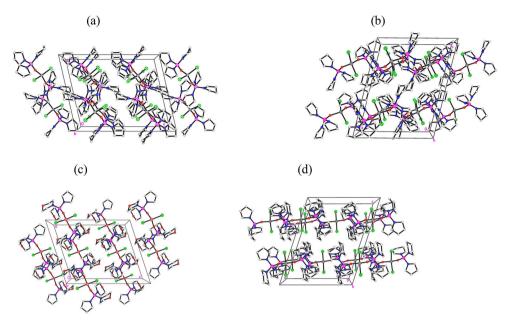


Figure 7. Molecular packing arrangements of 1 (a), 3 (b), 11 (c), and 12 (d).

directions (Figure 7(a)). In **3**, Cl2 and Cl3 both interact with the same neighboring molecule, forming zig-zagging, double C-H···Cl bonded columns down the *b*-axis. Cl3 also interacts with another neighboring molecule, an interaction which propagates down the *c*-axis (Figure 7(b)). **11** has a set of these C-H···Cl interactions propagating down the [110] and *a*-axes, along with a head to tail motif about the inversion center (Figure 7(c)). **12** shows head to tail C-H···Cl interaction which propagates down the *c*axis. There is also a C-H···Cl interaction which propagates down the crystallographic [110] axis in **12** (Figure 7(d)).

4. Conclusion

New zinc(II) and cadmium(II) complexes with phosphoramides containing cyclic amino groups were prepared and characterized using multinuclear (¹H, ¹³C, and ³¹P) NMR, IR spectroscopy, and in some cases X-ray analysis. The X-ray data reveal that these complexes exist as monomers, in contrast to their corresponding chalcogen counterparts that form dimeric structures. In addition, the P-O-M bond angles were shown to be much more axial than those of P-E-M (E = S or Se) observed in corresponding chalcogen donor atom involved in such complexes. The coordination chemistry of these ligands toward other metal ions is under investigation.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

We are grateful to the Tunisian Ministry of High Education and Scientific Research for financial support (LR99ES14), to the French Service for Cooperation and Cultural Action and Agence Universitaire de la Francophonie (AUF) in Nouakchott, Mauritania for a scholarship to MM.

References

- [1] H. Garrido-Hermandez, K.D. Moon, R.I. Geahlen, R.F. Borch. J. Med. Chem., 49, 3368 (2006).
- [2] J.H. Tay, A.J. Arguelles, P. Nagorny. Org. Lett., 17, 3774 (2015).
- [3] C.M. Mikulski, J.S. Skryantzt, N.M. Karayannis, L.L. Pytlewski, L.S. Gelfand. *Inorg. Chim. Acta*, **27**, 69 (1978).
- [4] K. Issleib, B. Mitscherling. Z Anorg. Allg. Chem., 304, 73 (1960).
- [5] D.M.L. Goodgame, F.A. Cotton. J. Chem. Soc., 2298 (1961).
- [6] (a) M. Afzall, D. Crouch, M.A. Malik, M. Motevalli, P. O'Brien, J.-H. Park, J.D. Woollins. Eur. J. Inorg. Chem., 171–177 (2004); (b) J. Waters, D.J. Crouch, J. Raftery, P. O'Brien. *Chem. Mater.*, 16, 3289 (2004).
- [7] J. Jasieniak, C. Bullen, E.J. Van, P. Mulvaney. J. Phys. Chem. B, 109, 20665 (2005).
- [8] T. Chivers, J.S. Ritch, S.D. Robertson, J. Konu, H.M. Tuononen. Acc. Chem. Res., 43, 1053 (2010).
- [9] N.M. Karayannis, C.M. Mikulski, L.L. Pytleweski. Inorg. Chim. Acta Rev., 5, 69 (1971).
- [10] K. Bania, N. Barooah, J.B. Baruah. Polyhedron, 26, 2612 (2007).
- [11] L. Qu, Z. Peng, X. Peng. *Nano Lett.*, **1**, 333 (2001).
- [12] C. McGuigan, R.N. Pathirana, J. Balzarini, E. De Clercq. J. Med. Chem., 36, 1048 (1993).
- [13] R.G. Rodríguez, M.P. Hendricks, B.M. Cossairt, H. Liu, J.S. Owen. Chem. Mater., 25, 1233 (2013).
- [14] (a) H. Shen, H. Wang, X. Li, J.Z. Niu, H.X. Chen, L.S. Li, *Dalton Trans.*, 10534 (2009);(b) L.S. Dent Glasser, L. Ingram, M.G. King, G.P. McQuillan. *J. Chem. Soc. A*, 2501 (1969).
- [15] M.A. Sanhoury, T. Mbarek, A.M.Z. Slawin, M.T.B. Dhia, M.R. Khaddar, J.D. Woollins. *Polyhedron*, **119**, 106 (2016).
- [16] Z. Gouid, M.A.K. Sanhoury, R.B. Said, C.L. Carpenter-Warren, A.M.Z. Slawin, M.T.B. Dhia, J.D. Woollins, S. Boughdiri. J. Coord. Chem., 70, 3859 (2017).
- [17] F. Ebnou, M. M'Haiham, K. Ebeid, C.L. Carpenter-Warren, A.M.Z. Slawin, J.D. Woollins, M.T. Ben Dhia, M.A. Sanhoury. *Polyhedron*, **159**, 206 (2019).
- [18] D.D. Perrin, W.L.F. Armarego. *Purification of Laboratory Chemicals*, 6th edn, Butterworth-Heinemann, Oxford (2009).
- [19] M.S. Henriques, D.I. Gorbunov, A.N. Ponomaryov, A. Saneei, M. Pourayoubi, M. Dušek, S. Zvyagin, M. Uhlarz, J. Wosnitza. *Polyhedron*, **118**, 154 (2016).
- [20] J.-C. Bollinger, G. Yvernault, T. Yvernault. Spechtrochim. Acta, **41**, 399 (1985).
- [21] E.V. Goud, B.B. Pavan Kumar, Y. Shruthi, A. Paul, A. Sivaramakrishna, K. Vijayakrishna, C.V.S. Brahmananda Rao, K.N. Sabharwal, H.S. Clayton. J. Coord. Chem., 66, 2647 (2013).
- [22] A.L. Fuller, L.A.S. Scott-Hayward, Y. Li, M. BüHl, A.M.Z. Slawin, J.D. Woollins. J. Am. Chem. Soc., 132, 5799 (2010).
- [23] CrystalClear-SM Expert v2.1. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan (2015).
- [24] CrysAlisPro v1.171.38.41. Rigaku Oxford Diffraction, Rigaku Corporation, Oxford, UK (2015).
- [25] *CrystalStructure* v4.2. *Rigaku Americas*, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan (2015).
- [26] O.V. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A.K. Howard, H. Puschmann. J. Appl. Crystallogr., 42, 339 (2009).
- [27] A. Altomare, M. Burla, M. Camalli, G. Cascarano, C. Giacovazzo, A. Guagliardi, A. Moliterni,
 G. Polidori, R. Spagna. J. Appl. Crystallogr., 32, 115 (1999).

14 🕢 M. M'HAIHAM ET AL.

- [28] P.T. Beurskens, G. Admiraal, H. Behm, G. Beurskens, J.M.M. Smits, C. Smykalla. Z. Kristallogr. Cryst. Mater., 99 (1991).
- [29] J.F. de Wet, M.R. Caira. J. Chem. Soc., Dalton Trans., 2043 (1986).
- [30] J G.H. Du Preez, H. E. Rohwer, B. J.A.M. van Brecht, B. Zeelie, U. Casellato, R. Graziani. Inorg. Chim. Acta, 189, 67 (1991).
- [31] M. Mathew, G.J. Palenik. Can. J. Chem., 47, 1093 (1969).
- [32] CSD Refcode: *IZOTUO* 10.5517/ccdc.csd.cczdqhk.
- [33] CSD Refcode: IZOVAW 10.5517/ccdc.csd.cczdqln.
- [34] C. Romminig, J. Songstad. Acta Chem. Scand., A36, 665 (1982).
- [35] C.R. Hilliard, N. Bhuvanesh, J.A. Gladysz, J. Blümel. Dalton Trans., 41, 1742 (2012).
- [36] R. Davies. R. Soc. Chem., 286 (2007).
- [37] J.E. Huheey, E.A. Keiter, R.L. Keiter (Eds.). *Inorganic Chemistry-Principles of Structure and Reactivity*, 4th edn, Harper Collins College Publishers, London (1993).
- [38] N. Burford, B.W. Royan, R.E.V.H. Spence, R.D. Rogers. J. Chem. Soc., Dalton Trans., 2111 (1990).
- [39] L. Yang, D.R. Powell, R.P. Houser. Dalton Trans., 955 (2007).

Appendix

CCDC numbers 1951187, 1951189, 1951190 and 1951191 contains the supplementarycrystallographic data for 1, 3, 11 and 12, respectively. These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html, or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: (+44) 1223-336-033; or E-mail: deposit@ ccdc.cam.ac.uk.