2-Amino-2-deoxy-D-glycero- α -L-gluco-heptose hydrochloride: structural study by 1 H-n.m.r. spectroscopy

JUAN A. GALBIS PÉREZ, P. ARECES BRAVO, AND A. M. PIZARRO GALAN

Department of Organic Chemistry. University of Extremadura, Badajoz (Spain)

(Received February 3rd, 1983; accepted for publication, February 24th, 1983)

The aminonitrile synthesis of 2-amino-2-deoxyaldoses constitutes a general method for preparing aminoaldoses from aldoses, and it has been widely applied to the preparation of pentosamines and hexosamines by Kuhn and Kirschenlohr¹. The application of this method to D-galactose yielded a heptosamine which was named "D-galaheptosamin", without specification of the configuration of C-2

We have now repeated this synthesis, and have assigned the configuration of 2-amino-2-deoxy-D-glycero- α -L-gluco-heptose hydrochloride (1) to the crystalline solid that was obtained. This assignment was supported by the ¹H-n.m.r. spectra recorded for compound 1 and some of its derivatives. As is shown in Fig. 1, the ¹H-n.m.r. spectrum of 1 recorded immediately after it had dissolved showed only an anomeric-proton signal corresponding to the equatorial proton of the α anomer $(J_{1,2} 3.3 \text{ Hz})$. In the spectrum recorded when mutarotational equilibrium had been reached, the signal corresponding to both anomers could be detected $(J_{1,2} \text{ for the } \beta \text{ anomer}, 8.3 \text{ Hz})$. From the integral of this spectrum, the anomeric proportions were determined to be 66% of the α and 34% of the β anomer.

The ¹H-n.m.r. spectra recorded for the acyl derivatives 2 and 3 (see Table I) showed high values (\sim 10 Hz) for the coupling constants $J_{2,3}, J_{3,4}$, and $J_{4,5}$, in agreement with the *trans*-diaxial dispositions for these protons in the proposed configuration D-glycero-L-gluco. The small value (\sim 2 Hz) of $J_{5,6}$ showed a gauche disposition for these protons.

$$\mathbf{1} \alpha R^1 = OH, R^2 = H$$

 $\mathbf{2} \beta R^1 = H, R^2 = OH$

$$2\alpha R = 0Ac, P' = R = H$$
 $2\beta R' = R^3 = H, R' = 0Ac$
 $3\alpha R' = 0Ac, R = H, R' = 0A$
 $3\beta R' = H, R' = 0Ac, R = Bz$

NOTE 281

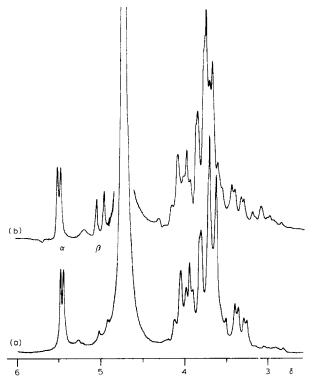


Fig. 1. ¹H-N.m.r. spectrum of 2-amino-2-deoxy-D-glycero-L-gluco-heptose in D₂O: (a) immediately after it was dissolved; (b) when the mutarotational equilibrium was reached.

EXPERIMENTAL

General methods. — Solutions were evaporated in vacuo at temperatures below 40°. Melting points were determined with a Gallenkamp apparatus, and are uncorrected. Optical rotations were measured with a Perkin–Elmer 141 polarimeter (10-cm cell). Paper chromatography was performed on Whatman No. 1 paper, by the ascending tehnique, with 1:1:1 1-butanol-pyridine-water as the eluant and silver nitrate-sodium hydroxide as the indicator. T.l.c. was conducted on plates coated with 0.25-mm, and p.l.c. on plates coated with 1-mm, layers of silica gel, Merck GF-254 and Merck 60 PF-254, respectively, with 3:2 benzene-ether as the eluant; the components were located by exposure to either u.v. light or iodine vapor. Column chromatography was performed on silica gel (Merck No. 60, 0.05–0.2 mm) with a benzene-ether gradient. I.r. spectra (KBr discs) were recorded with Beckman IR-33 and Perkin-Elmer 399 spectrometers. ¹H-N.m.r. spectra (90 MHz) were recorded with a Perkin-Elmer spectrometer, and coupling constants were measured directly from spectra recorded at 300-Hz sweep-width. Assignments were confirmed by double-resonance experiments.

R VI SHB IS (8) SADOO
14 \(\cdot

TABLE

Compound H-1	Н-1	Н-2	Н-3	<u> </u>	Н.5	НФ	Н-7	н.т. v.н Рћ	H-V		Ac
20°	17 d	17d + 49td J. 13th	5 (NES 45 m	5 (MLS 45 m	3 UNLS 15 m 3 95-d 20 m 5 UNLS 45 m	5 (KL5 45 m	·	145-4 20m	0 6: HN/	<u> </u>	2 20 (3H) 2 11 c(3H) 2 04 c(6H)
. 2 0."	6 40 d	0 6°1	5 04t J ₁₄ 97	5 461 1, 5 9 3	1 20-1 1 m	e # ,		- 1 21-4 47 m ·	PAK Service	I	2 01 \((34) \) 1 9 \(\cdot (34) \) 2 07 \((64) \)
82	2 4 d	E (7 7 %) 1	1.52.1	5 10t 14.47	10.7 t	F		. 1/18 4 \$/1 m .	P ()	i	(H)
7B.,	6 64 d	4 45-4 NS m 1, 10 0	5 X41 7, 100	5 441 7,5 10 0	431 dd 74,23	5 59 m		- 15-4 Sm -	9.33d An 29.0	ı	1 94 (3H) 2 10 (3H) 2 05 (6H)
											200.(3H) 198.(3H) 194.(3H)

3aʻ	6.38 d J _{1,2} 3 3	5 18 dd J _{2,3} 11.3	5.98 dd J _{3,4} 9.0	5 09 dd J _{4.5} 10.3	4 15-4.37 m J _{5.6} 2 3	5 32 m°	←4.15~4 37 m →	I	7 31–7 85 m	
$3lpha^d$	6.78 d J _{1,2} 3.0	5 51 dd J _{2,3} 11.3	6 37 dd J _{3,4} 9 0	5.45 dd J _{4.5} 10.3	4 33–5 70 m J _{5,6} 2 3	5 49 m°	←4 35–5.70 m →	l	7.15-8.00 m	т 00°
36 .	6 52 d J _{1,2} 8 0	4.30 m ^f J _{2,3} 10 3	5.95 dd J _{3,4} 9.0	S 12 dd J _{4.5} 10.2	4.04 dd J _{5 6} 2.3	5 33 m° J _{6,7} 5 6 J _{6,7} , 7 0	4 31 dd 4.12 dd J _{7 7} -11.3	l	7.40-8.25 m	25 m
$3oldsymbol{eta}^d$	7.00 d J _{1,2} 9 0	4 30-4.75 m J _{2,3} 9 0	6 38 dd J _{3,4} 10.5	5.53 t J _{4.5} 10.5	4.30–4.75 m	5 60 m	←4.30-4.75 m →	1	7 18-7 95 m	S m

"The spectrometer was locked on the signal of internal Me₄Si. ^bThe spectra were recorded at 35 S². Signal multiplicaties: d. doublet: dd. doublet doublet. m. multiplet, s, singlet, t, triplet; td, triplet; td, triplet doublet. 'In CDCl₃ ^dIn pyridine-d; 'Two double doublets superimposed 'Covered by signals of H-7 and H-7'.

284 NOTE

2-Amino-2-deoxy-D-glycero-α-L-gluco-heptose hydrochloride (1α). — The method of Kuhn and Kirschenlohr¹ was used. After recrystallization from water by addition of methanol, the pure product (70%) was obtained; m.p. 157–159° (dec.), $[\alpha]_D^{24} - 85 \rightarrow -69^\circ$ (24 h; c 1.3, water) [lit.¹ m.p. 160°, $[\alpha]_D^{24} - 77.5^\circ \rightarrow -66.5^\circ$ (c 1.3, water)].

Anal. Calc. for C₇H₁₆ClNO₆: C, 34.21; H, 6.56; Cl, 14.44; N, 5.69. Found: C, 33.95; H, 6.52; Cl, 13.96; N, 5.69.

2-Acetamido-1,3,4,6,7-penta-O-acetyl-2-deoxy-D-glycero-α-(and β)-L-gluco-heptopyranose (2α and 2β). — A suspension of 1 (3.0 g, 12.2 mmol) in pyridine (35 mL) was treated with acetic anhydride (25 mL, 245.0 mmol). The mixture was stirred while being heated for 1 h at 60°, and was then kept for 5 days at room temperature. The solution was poured into ice-water (150 mL), and extracted with chloroform (3×50 mL). The extracts were combined, washed successively with M hydrochloric acid (3×50 mL), a saturated solution of sodium hydrogenearbonate (3×50 mL), and water, dried (Na₂SO₄), and evaporated under diminished pressure; the syrupy residue crystallized from methanol to give 2β (0.6 g, 9%). Recrystallized from methanol, m.p. 221-223°, $[\alpha]_D^{24}$ +32.5° (c 0.5, chloroform); r_{max} 3370 (NH), 1745 (C=O ester), 1660 (Amide I), and 1515 cm⁻¹ (Amide II); ¹H-n m.r. data are given in Table I.

Anal. Calc. for $C_{19}H_{27}NO_{12}$: C, 49.45; H, 5.89; N, 3.03. Found: C, 49.22; H, 5.84: N, 3.16.

Concentration of the methanolic mother-liquors gave 2α (3.4 g, 55%); recrystallized from water, m.p. 82–84°, $[\alpha]_D^{24}$ –45.3° (c 0.5, chloroform); $\nu_{\rm max}$ 3350 (NH), 1750 (C=O ester), 1655 (Amide I), and 1530 cm⁻¹ (Amide II); ¹H-n.m.r. data are given in Table I.

Anal. Calc. for $C_{19}H_{27}NO_{12}$: C, 49.45; H, 5.89; N, 3.03. Found: C, 49.05; H, 5.87; N, 3.25.

1,3,4,6,7-Penta-O-acetyl-2-(N-acetylbenzamido)-2-deoxy-D-glycero- α -L-glu-co-heptopyranose (3α). — A solution of 2α (2.0 g, 4.3 mmol) in dry pyridine (7.0 mL) was treated with benzoyl chloride (1.3 mL, 12.2 mmol). After being heated under reflux for 5 h, the solution was cooled to room temperature, poured into ice—water, and extracted with chloroform (3×20 mL). The extracts were combined, successively washed with a saturated solution of CuSO₄ (3×20 mL), and water, dried (MgSO₄), concentrated, and decolorized with charcoal. The product (3α) was obtained by preparative t.l.c., and crystallization from methanol-water; yield 0.9 g (37%); m.p. 79– 81° , [α] $_D^{24}$ – 32° (c 0.5, chloroform); $\nu_{\rm max}$ 1745 (C=O ester), 1655 (C=O amide), 1590 and 1440 cm $^{-1}$ (C=C aromatic); $^{-1}$ H-n.m.r. data are given in Table I.

Anal. Calc. for $C_{26}H_{31}NO_{13}$; C, 55.22; H, 5.52; N, 2.47. Found; C, 54.94; H, 5.55; N, 2.50.

1,3,4,6,7-Penta-O-acetyl-2-(N-acetylbenzamido)-2-deoxy-D-glycero- β -L-glu-co-heptopyranose (3β). — A solution of 2β (3.0 g, 6.5 mmol) in dry pyridine (15 mL) was treated with benzoyl chloride (1.5 mL, 13.0 mmol). After being stirred for

NOTE 285

24 h at room temperature, the solution was poured into ice—water, and extracted with dichloromethane (3 × 30 mL). The extracts were combined, washed successively with M hydrochloric acid, a saturated solution of sodium hydrogenearbonate, and water, dried (MgSO₄), evaporated, and the residue purified by column chromatography (gradient benzene \rightarrow ether), to give amorphous 3β (1.1 g, 30%); m.p. 59–61°, $[\alpha]_D^{24} + 35.3^\circ$ (c 0.5, chloroform); ν_{max} 1740 (C=O ester), 1660 (C=O amide), 1590 and 1440 cm⁻¹ (C=C aromatic); ¹H-n.m.r. data are given in Table I.

Anal. Calc. for C₂₆H₃₁NO₁₃: C, 55.22; H, 5.52; N, 2.47. Found: C, 54.92; H, 5.52; N, 2.60.

REFERENCE

1 R. KUHN AND W. KIRSCHENLOHR, Justus Liebigs Ann. Chem., 600 (1956) 115-125.