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Abstract: The thermal conversion of sulfoxide 1 into the O-silylated cyclic O,S-acetal (2) is the first 
example of the sila-Pummerer rearrangement of cyclic organosilicon sulfoxides leading to ring 
expansion. The kinetics of .the rearrangement are studied and thermodynamic parameters are 
determined. The results are in compliance with mechanism involving a pentacoordinated silicon 
atom. © 1998 Elsevier Science Ltd. All fights reserved. 

The sila-Pummerer rearrangement is one of  numerous intramolecular rearrangements characteristic of 

the ct- and 13-carbofunctionai organosilicon compounds) R consists in transformation of  thermally unstable 

ct-trimethylsilylmethyl(organyl)sulfoxides into the corresponding O-silylated O,S-acetals due to 1,3-migra- 

tion of the silicon atom to the sulfoxide oxygen atom L2 

Factors determining the ease of  the rearrangement are most completely studied for acyclic saturated 

sulfoxides of the type Me3SiCR'R"S(O)R. They are: (i) steric effects of the substituent(s) at the a-carbon 

atom; (ii) electronic effects of  the substituent at the sulfur atom, and (iii) stereochemistry of  the sulfoxide. 

The steric shielding of  the sulfoxide group with one (R' = H, R" = AIk, At, alkenyl, etc.) or two (R' = At, g" 

-- Alk, alkenyl) substituents at the ct-carbon atom tends to slow clown 3"4 or completely suppress the process 5 

as compared to the unsubstituted analogues) More negative charge on the oxygen atom facilitates migration 

of the silyl group so that alkyl sulfoxides (R = AIk) undergo the rearrangement much more readily (below 

room temperature) 6" 7 than the aryl derivatives (R = At). 2'4a However, when a t-Bu group is attached to the 

sulfur atom the rearrangement of  the alkyl sulfoxide proceeds only on heating. 6 The steric effect of a bulky 

Si(OCH2CH2)3N group is, apparently, responsible for the thermal stability (to 130-170°C) of  alkylsulfoxides 

RSOCH2Si(OCH2CH2)3N (R = Me, Et). s 

One of  the main factors affecting the ease of transformation of  ct-silylsulfoxides into the O-silyl-O,S- 

thioacetals is the ster~chemistry of the Si -C-S=O fragment. ~c'6'7"9 A necessary condition for the 

rearrangement of  ct-silylsulfoxides is the syn-coplanarity of the Si-C and S=O bonds which facilitates the 

intramolecular interaction between the silicon and oxygen atoms. 7 The effect is most pronounced for cyclic 

sulfoxides having an exocyclic silicon atom: these sulfoxides are thermally stable only when the silyl and 

sulfoxide groups are ant/-periplanar (E-configuration). 9"1° 

The above trends are only qualitative since no kinetic studies of  the rearrangement has been reported in 

the literature. 
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Here we report on the sila-Pummerer rearrangement of  the recently obtained cyclic organosilicon sulf- 

oxide, n 3,3-dimethyi-3-silathiane S-oxide 1 in which the sulfoxide group is predominatly equatorial. Heating 

1 in THF for 2 h leads to its complete transformation into the seven-membered cyclic O,S-ac.etal 2. ]2 This 

reaction is the first example of  a 1,3-migration of  a silicon atom to a sulfoxide oxygen resulting in ring 

expansion. 

Me2S~jS=O ~ Me2Si/0"~ 

1 2 

Scheme 1 

Ring expansion by intramolecular nucleophilic attack of  an oxy-anion on a silicon atom has been 

described for cyclic c~-silylcarbinols.13 

Acidic hydrolysis of  the cyclic O-silyl O,S-acetal 2 affords, as judged from NMR spectroscopy and 

mass-spectrometry, a linear product, 1,1,3,3-tetramethyi-l,3-bis(3'-mercaptopropyl)disiloxane 3. TM 

2 ~ HCHO + (I-ISCH2CH2CH2)Me2SiOH ~ [(HSCH2CH2CH2)Me2S~20 

3 

Scheme 2 

The kinetics of  the rearrangement were measured in CC14 at 65, 70, and 80°C by integration of the 

singlet assigned to the OCH2S protons of  2 at 4.88 ppm (twice at each temperature, Fig. 1). The first-order 

rate constants k are 2.015x104, 4.45x10 "4, and 7.12~10 "4 s q, respectively. Activation parameters were found to 

be AE ¢ 50.8 kJ/mol, AI-I ~ 47.7 Ll/mol, AS* -171 J/molK. The value of AE* is substantially lower than that 

found for a similar rearrangement of  both linear and cyclic silylated ketones ~ which proceed with the silyl 

group migrating to the carbonyl oxygen through the transition state with a pentacoordinated silicon atom, 

and is consistent with the substantially higher thermal stability of  [3-silyl ketones as compared to c~- 

silylsulfoxides of  similar structure. 

The strongly negative value of AS s imply a very constrained transition state and may be indicative of  

the Si-O bond formation preceding the Si-C bond breaking in the first stage of the Brook ylide mechanism, 

as illustrated below. The formation of an ylide as a kinetically independent species (proved in some cases by 

trapping experiments 16) is in our case still dubious because of substantially lower (of ref. ~) energy of  

activation. More definite conclusions on the mechanism require additional studies which are in progress 

n o w .  
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Fig. 1.1H NMR spectra of the reaction mixture (Scheme 1) - initial (above), and final (below) 
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