CHEMISTRY LETTERS, pp. 333-334, 1987.

Preparation of Tetrahydropyran Derivatives with α -Electron-Withdrawing Substituents from 1,5-Dibromopentane Derivatives by Treatment with Silver Nitrate

Michiharu MITANI,* Hiroshi TAKEUCHI, and Kikuhiko KOYAMA Department of Synthetic Chemistry, Faculty of Engineering, Shinshu University, Wakasato, Nagano 380

When 1,5-dibromopentane derivatives having the electronwithdrawing groups at one terminus, which were obtained by Cu(I)catalyzed photochemical addition of 1,3-dibromopropanes to electrondeficient olefins, were subjected to treatment with silver nitrate, tetrahydropyran derivatives with the electron-withdrawing groups at the α -position to the oxygen atom were obtained.

Although a variety of methods have been proposed for direct preparation of substituted tetrahydropyrans from acyclic precursors, many of those necessitate rather hard reaction conditions such as presence of an acid or a free-radical initiator and are not often compatible with reactive functional groups. Methods from dihaloalkane derivatives have been known of only a few examples containing praparation of unsubstituted tetrahydropyran by treatment of 1,5-dibromopentane with zinc oxide in water for very long hours¹⁻³⁾ and hard to afford tetrahydropyran derivatives with the α -electron-withdrawing substituents. We wish to report here our results that various substituted tetrahydropyrans with the electron-withdrawing groups at the α -position to the oxygen atom are derived by treatment with silver nitrate from 1,5-dibromopentane derivatives having the electron-withdrawing groups at one terminus, which are readily prepared by Cu(I)-catalyzed photochemical addition of 1,3-dibromopropane or its derivatives to electron-deficient olefins.⁴⁾ A variety of functional groups (e.g., CO₂R, viny1, CN, and CHO) can be tolerated in our method.

2,6-Dibromohexanenitrile (<u>1a</u>), which was prepared from 1,3-dibromopropane and acrylonitrile, was first subjected to reaction with silver nitrate in CH_3CN-H_2O under reflux. 2-Bromo-6-nitroxyhexanenitrile, however, was only produced. In turn, <u>1a</u> was treated with silver nitrate in DMSO-H₂O. After <u>1a</u> (2 mmol) in DMSO (12 ml) was added to silver nitrate (6 mmol) in H₂O (15 ml), the resulting solution was heated at 110 °C for 3 h. After filtration of a precipitate, the reaction mixture was poured into water and extracted with ether. VPC analysis of the extract showed the presence of the only volatile product, which was isolated by silica-gel chromatography and assigned as 2-cyanotetrahydropyran (<u>2a</u>) by ¹H-NMR, IR, and mass spectra. The reaction of <u>1a</u> with silver nitrate was performed in some other solvent systems (DMF-H₂O, dioxane-H₂O, and micellized benzene-H₂O) and the DMSO-H₂O system was proved to be the best of solvent systems examined (Table 1). Although <u>1a</u> was treated with silver oxide instead of silver nitrate in DMSO-H₂O

and CH_3CN-H_2O , <u>2a</u> was not produced at all. Preparation of various tetrahydropyrans is collected in Table 1.

	Bro	^{CH} 2 ^{CHCH} 2 ^{CH} 2 ^{CH} 2 ^{CH} 2 ^{CH} 2 ^{CH} 2 ^{CH}	-CHBrA	$\frac{\text{AgNO}_3}{\text{O}}$ R_1 R_2	2 3	
	<u>1</u>			2		
	R ₁	^R 2	R ₃	Solvent	Yield of $2 / 8$	
<u>a</u>	н	Н	CN	DMSO-H20	57	
				CH ₃ CN-H ₂ O	0	
				DMF-H20	0	
				dioxane-H ₂ O	51	
				benzene-H ₂ O-NaLS	0	
<u>b</u>	н	н	COOEt	DMSO-H20	78	
c	Н	н	COMe	DMSO-H ₂ O	79	
<u>d</u>	н	Н	СНО	DMSO-H2O	61	
e	н	Me	CN	DMSO-H2O	56	
f	н	Me	COOEt	DMSO-H2O	77	
g	Н	COOEt	COOEt	DMSO-H ₂ O	75	
h	н	- (CH ₂) ₃ CO-		DMSO-H2O	72	
i	Me	н	CN		57	
j	CH2CH=CH2	Н	CN	DMSO-H2O	48	
<u>k</u>	CH ₂ CH=CH ₂	COOEt	COOEt	DMSO-H ₂ O	49	

Table 1. Preparation of tetrahydropyrans from 1,5-dibromopentanes

When 2-methyl-2,6-dibromohexanenitrile, in which one of the carbon atom bearing bromine is tertiary, was subjected to treatment with silver nitrate in DMSO-H₂O, cyclization did not occur and acyclic ene-ol compounds (<u>3a</u>, <u>b</u>) were produced [(<u>3a</u>), 67%; (<u>3b</u>), 10%].

This method was also tried for construction of the oxepane ring. Treatment of 2,7-dibromoheptanenitrile with silver nitrate in DMSO-H₂O gave 2-cyanooxepane in 10% yield.

References

- 1) J. S. Allen and H. Hibbert, J. Am. Chem. Soc., <u>56</u>, 1398 (1934).
- 2) R. Arentzen, Y. T. Kui, and C. B. Reese, Synthesis, 1975, 509.
- C. Degrand, P. L. Compagnon, F. Gasquez, and G. Belot, Electrochim. Acta, <u>29</u>, 625 (1984).

4) M. Mitani, I. Katoh, and K. Koyama, J. Am. Chem. Soc., <u>106</u>, 3368 (1983).

(Received November 15, 1986)