
BIOINFORMATICS Vol. 17 no. 5 2001
Pages 468–478

BioMolQuest: integrated database-based retrieval
of protein structural and functional information

Yury V. Bukhman and Jeffrey Skolnick ∗

Laboratory of Computational Genomics, Donald Danforth Plant Science Center,
893 N. Warson Rd, St Louis, MO 63141, USA

Received on July 12, 2000; revised on November 13, 2000; accepted on January 22, 2001

ABSTRACT
Motivation: Information about a particular protein or pro-
tein family is usually distributed among multiple databases
and often in more than one entry in each database. Re-
trieval and organization of this information can be a labori-
ous task. This task is complicated even further by the ex-
istence of alternative terms for the same concept.
Results: The PDB, SWISS-PROT, ENZYME, and CATH
databases have been imported into a combined relational
database, BioMolQuest. A powerful search engine has
been built using this database as a back end. The
search engine achieves significant improvements in query
performance by automatically utilizing cross-references
between the legacy databases. The results of the queries
are presented in an organized, hierarchical way.
Availability: http://bioinformatics.danforthcenter.org/yury/
public/home.html. Unavailable for commercial users.
Contact: skolnick@danforthcenter.org

INTRODUCTION
The number of proteins whose structures have been
experimentally determined is increasing at a fast pace.
This growing abundance of structural information makes
it possible to study the complex relationships between
macromolecular structure and biological function. Pro-
teins that have a similar fold often have a similar function
(Creighton, 1993). However, the relationship between
structure and function is not necessarily straightforward.
There are cases when two proteins with similar folds have
different functions or proteins having similar functions
adopt different folds (Creighton, 1993). In particular,
there is strong evidence that the function of an enzyme
may be determined by a local structural motif rather
than the global fold (Fetrow and Skolnick, 1998). A
well-known example of this are serine proteases. Bacterial
and eukaryotic serine proteases have similar active sites
but very different global structures (Branden and Tooze,
1991). Further elucidation of the relationships between
protein structure and function remains one of the most im-

∗To whom correspondence should be addressed.

portant problems in biology (Thornton et al., 1999). The
exploration of this problem will benefit from advances in
the area of bioinformatics (Kanehisa, 2000), which should
provide for the convenient retrieval of structural data in
conjunction with related information about biological
function and the classification of protein folds.

The primary source of protein structure information is
the Protein Data Bank (PDB) (Berman et al., 2000), where
the atomic coordinates of the solved protein structures are
deposited. While the PDB also contains some functional
annotation at various levels of description, unfortunately
there are several problems, which make its use somewhat
problematic. First, the annotations are provided by authors
of the PDB entries, and are therefore often somewhat
inconsistent. This problem is exacerbated by the fact
that there exist multiple, alternative names for many
proteins. The Data Uniformity project under way at RCSB
may alleviate this problem (see http://www.rcsb.org/pdb/
latest news.html#Uniformityplan). However, at the time
of writing, the project has not been completed. Second,
there are often many structures of the same protein that
differ in crystallization conditions, point mutations, and
other details. Each of these structures is listed as a separate
PDB entry. It is not immediately clear from the result of a
query whether different hits represent the same protein or
different ones. Finally, it is often of interest to retrieve the
structural classification of the proteins in addition to the
functional annotation. There are several distinct systems
of structural classification (Murzin et al., 1995; Holm
and Sander, 1996; Orengo et al., 1997), and there exists
a separate database for each of them. Thus a scientist
faced with a list of PDB entries as a result of a keyword
query generally does not know how many distinct proteins
are recovered, whether some structures of interest are
missing due to the use of alternative protein names in the
annotation, or what the fold types of the proteins that were
found are. Answering these questions requires additional
analysis and necessitates the use of other web sites.

It would be beneficial to integrate experimental in-
formation about biomolecular structures contained in
the PDB with more consistent sources of functional

468 c© Oxford University Press 2001



BioMolQuest

annotation and structural classification. In the contem-
porary world of bioinformatics, the information about
structure, classification, and the biological function of
each protein or family of proteins is spread over many
database entries in several databases, forming a web of
data in which it is all too easy to get lost. In order to help
researchers access information efficiently, a good retrieval
system is necessary which should ideally perform two
tasks:

• search several databases simultaneously;

• output an organized summary of the information that
is currently available for the protein of interest.

A few powerful search engines, most notably SRS (Etzold
et al., 1996) and DBGet/LinkDB (Fujibuchi et al., 1998),
have been developed to address the first of these tasks.
They allow the user to search multiple databases simulta-
neously. Moreover, one can cross-link results of a search to
other databases to retrieve more information on proteins of
interest. However, the result of an SRS or DBGet/LinkDB
query is generally a flat list of database entries, leaving one
wondering how many distinct proteins or protein families
have been retrieved, what are the groups of entries describ-
ing the same protein, or whether some entries of interest
have been missed due to alternative annotation terms.

Both SRS and DBGet/LinkDB use original biological
databases in their flat file format and operate by creating
and searching indexes of these files. This approach has
allowed the development of very robust and extensi-
ble systems capable of handling dozens of different
databases. However, the ability of these systems to
perform complex queries on the data is somewhat limited.
A more comprehensive solution to the data integration
problem is to import the databases of interest into a data
warehouse, that is, a single large database which may
utilize, for example, a relational database management
system. The databases imported into the warehouse are
usually referred to as ‘legacy’ databases. Cross-references
between legacy database entries can be used to assemble
all of the available information about a given protein. This
information can be queried, retrieved, and organized as a
whole, which allows both flexible querying capabilities
and the generation of informative reports. The user can
be relieved of a significant part of the data analysis and
assembly work. The developers can take advantage of
industry-standard database technologies, a wide choice
of open source and proprietary database management
systems, and the SQL query language.

Although data warehousing is used widely in industry
(see e.g. Anahory and Murray, 1997), its application
in academic science has been problematic. The main
limitations of large data warehouses are their complexity
and high cost. That is probably why they are often

considered impractical for systems that aim to provide
access to a large number of diverse biological datasets
(Fujibuchi et al., 1998). Nevertheless, smaller systems
serving communities of users interested in a particular
research area may still be feasible and useful. The rapid
progress of open source database management systems
that are free for non-commercial use makes it even more
tempting to explore the advantages that moderate-scale
data warehouses may have to offer.

One data warehouse type system in structural biology
is 3DinSight (An et al., 1998), which includes the PDB
along with the SWISS-PROT and PIR sequence databases
(Barker et al., 2000) as well as information about func-
tional sequence motifs (PROSITE) (Hofmann et al.,
1999), enzymes, reactions, and metabolites (LIGAND)
(Goto et al., 2000), etc. A certain degree of data integra-
tion and concerted data retrieval from different sources
is achieved. In particular, one can run SQL queries on a
relational database including PDB, SWISS-PROT, PIR,
PROSITE, and the PMD mutant database (Kawabata et
al., 1999). 3DinSight provides a form-driven interface as
well.

Another interesting data warehousing project is InterPro
(Apweiler et al., 2000), which integrates data from several
databases of protein domains and sequence motifs. The
entries from those databases are merged, and new InterPro
entries are created which contain information derived from
the original databases. This thorough approach to data
warehousing can add a lot of value to the resource, but
it is very labor-intensive.

We have attempted to create our own warehouse of
information that may be of interest to those researchers
who study relationships between the three-dimensional
structure and biological function of proteins. The legacy
databases that we have initially integrated include PDB,
SWISS-PROT, ENZYME, and CATH (Berman et al.,
2000; Bairoch and Apweiler, 2000; Bairoch, 2000;
Orengo et al., 1997). PDB is the primary source of biolog-
ical structure information, SWISS-PROT and ENZYME
provide a thorough and consistent functional annotation,
and CATH provides information about folding domains
and their classification. Other databases of interest to
the structural biology community, as well as information
about protein structures predicted by our own group, are
to be added in the very near future. 3DinSight does not
include CATH or any equivalent, but it does have other
data sets and tools that we do not provide so far, thus our
two services may in part complement each other.

A distinctive feature of our service is a powerful search
engine that allows users to search all of our legacy
databases at once from a simple query form and produces
its output as a logically organized report. The search
engine automatically, by default, utilizes inter-database
cross-references to ensure a thorough retrieval of all

469



Y.V.Bukhman and J.Skolnick

Fig. 1. BioMolQuest system overview. Components are represented
by boxes, information flow by arrows.

information available about the protein or group of
proteins of interest to the user. The cross-referencing can
be turned off when it is inappropriate. Below, we show
that the strategy of using cross-references may lead to a
significant enhancement of the query performance. We
hope that this project will provide a valuable service to the
scientific community, serve as a platform for further de-
velopment, and contribute to the ongoing search for better
ways to organize and retrieve biological information.

DATABASE DEVELOPMENT AND
ADMINISTRATION
System overview
The components of BioMolQuest are shown schematically
in Figure 1. Most of the software was built using the Perl
scripting language (Wall et al., 1996). We also use the
MySQL relational database management system, which
is known to be fast, reliable, capable of handling large
data sets, and free for non-commercial use (DuBois,
2000). Perl has a broad community of users who have
developed a multitude of modules implementing object
classes that can be plugged into Perl programs. We use
DBI and related modules for communication between
our Perl programs and the MySQL database server,
the CGI module to create HTML output, and modules
derived from DBIx::TextIndex for creating and searching
indexes of textual database fields (see http://www.perl.
com/CPAN-local/modules/index.html).

The legacy databases are downloaded via ftp using

the Mirror package (http://www.sunsite.org.uk/packages/
mirror/). The legacy database records are then imported
into a relational database. The resulting database consists
mostly of text fields, which are indexed to allow faster
searching. The entries of the legacy databases are cross-
referenced to each other. A separate Perl program provides
the BioMolQuest search engine and a web interface.

Data organization
A legacy database entry usually consists of a set of records
listed sequentially in a text file. The records contain
specific kinds of information, for instance biochemical
classification, organism, literature references, etc. We map
each entry to a row in a relational database table, and
the records to the columns. Some records contain lists or
tables: these are often mapped to separate relational tables
cross-referenced to the entry table by the entry identifier.
Thus each legacy database gives rise to a corresponding
set of tables in the warehouse.

In order to allow query across multiple databases,
we maintain a special set of tables cross-referencing
entries from different legacy databases to each other.
The tables list primary identifiers from one database and
corresponding primary identifiers from the other. These
tables can be used in SQL joins to retrieve information
from two databases about the same protein or simply as
a ready, comprehensive source of cross-references for a
search engine.

Data warehouses often integrate data more tightly by
actually merging legacy database entries into new entities.
This approach may add value to the data and speed up
database queries, but it is much more labor-intensive.
Besides, it largely makes sense when entries from different
legacy databases represent the same kind of object, such
as sales of the same product or sequence and various
properties of the same protein chain. In our case, however,
ENZYME entries represent classes of proteins, SWISS-
PROT entries represent individual distinct chains, PDB
entries represent structures that may contain more than one
distinct chain, etc. Keeping these clearly different types
of objects separate while maintaining cross-references
between them seems the most simple and natural design
approach.

Parsing database files
We use custom Perl scripts to parse database files,
whereby each particular database field is usually pro-
cessed by a subroutine. Depending on the nature of the
field, its entire contents or the information extracted from
it can be put into a scalar variable, array, or hash. These
variables are mapped to the corresponding relational
database fields. Perl’s support for various nested lists,
particularly arrays of hashes, makes it easy to create data
structures that fit the original data in a natural way.

470



BioMolQuest

The format of database files is not always consistent.
This is particularly true of the PDB, where the official for-
mat is not always strictly observed, and the format specifi-
cation itself has been changing over time. While efforts are
under way at the RCSB to correct this problem (see http:
//www.rcsb.org/pdb/latest news.html#Uniformityplan), it
has not been completely rectified at the time of writing.
We try to adjust our parsers to the most common format
variations. For example, PDB files have COMPND
records where the information about biological molecules
making up the structure is presented. In the contemporary
PDB format, the COMPND record is subdivided into
sub-records specifying the name of each macromolecule,
corresponding chains, Enzyme Classification (EC)
numbers, etc. These sub-records are marked by special
identifiers, called ‘tokens’. In many older PDB files, the
tokens are missing, and the COMPND record contains
simply the name of the macromolecule, sometimes
followed by an EC number. Our PDB parser takes this
situation into account. In those cases where the tokens
are absent, it assumes that the entire COMPND record
represents the name of a single molecule and possibly
an EC number. It attempts to extract the latter using an
appropriate regular expression. It also assumes, perhaps
somewhat riskily, that all of the chains belong to the
molecule named in COMPND. To make matters even
more interesting, sometimes the COMPND record is
altogether absent, in which case the parser assumes that
the name of the molecule is contained in the HEADER
record.

Of course, it is virtually impossible, as well as danger-
ous, to try to account for all possible deviations from a
database’s format specification. The fallback strategy is
to assign NULL values to those variables that are not re-
ported in the expected format. For example, the resolution
of PDB structures obtained by diffraction methods is sup-
posed to be reported in REMARK 2 record, in columns
23–27, as a real(5.2) number. Our parser also accepts the
real(5.1) format, as resolution is often reported that way.
No other resolution formats or places in the file where it
might be reported were accepted at the time of writing. If a
protein structure has been solved by a diffraction method,
one might expect resolution to be reported. At the time of
writing, there were 7552 PDB entries that contained the
word ‘diffraction’ in the specification of their experimen-
tal technique. Only 12 of them had their resolution set to
NULL by our parser. 11 of those did actually have res-
olution reported in one form or another, so some loss of
information did occur, but it was not very significant.

Indexing text fields
Much of the annotation contained in the molecular
biology databases is in the form of English text. Direct
searches of relational database fields containing textual

data are usually inefficient. The data need to be indexed,
and the searches need to be run on those indexes. At
the time of writing, the MySQL database management
system did not provide an adequate text indexing and
searching capability. Fortunately, this problem was ad-
dressed by a few Perl modules. We used one of them,
DBIx::TextIndex, developed by Daniel Koch and freely
available at the CPAN archive of Perl modules (see
http://www.perl.com/CPAN-local/modules/by-module/
DBIx/DBIx-TextIndex-0.04.readme).

In order to better suit the needs of BioMolQuest, we
have modified DBIx::TextIndex rather extensively in the
following ways:

• split the module in two: one for building indexes, and
a separate one for searches;

• changed the parser subroutine to ensure better handling
of complex chemical names;

• changed SQL searches and related operations to allow
word completion in the queries;

• dropped calculations of result scores.

The last modification makes the code considerably sim-
pler and faster, albeit less sophisticated. The BioMolQuest
searches are done on the per-database-field basis. The
scoring of results is usually unimportant, because most
of these fields do not contain more than a few words.
Besides, the results are still output in a logical order,
which follows from the order in which the fields are
searched, e.g. hits in the headers come before hits in the
comments.

Cross-referencing legacy database entries
In order to search and retrieve all the information about
a particular protein, one must be able to cross-reference
entries from the legacy databases to each other. As
discussed above in Section Data organization, we maintain
special tables of cross-references for different pairs of the
legacy databases. These tables list primary identifiers from
one database and corresponding primary identifiers from
the other. The tables are rebuilt from scratch each time
the legacy databases are reloaded. The cross-reference
information is systematically extracted from each of the
legacy databases, calculated where necessary, and merged
to make sure that each set of cross-references is as
complete as possible.

SWISS-PROT entries have a special record (DR) cross-
referencing them to a number of other databases. PDB
entries usually have DBREF records cross-referencing
their chains to sequence databases, most often to SWISS-
PROT. In cases where other sequence databases are listed
in the DBREF records, it is sometimes possible to derive
a cross-reference to SWISS-PROT. For example, if both

471



Y.V.Bukhman and J.Skolnick

a PDB entry and a SWISS-PROT entry refer to the
same PIR entry, they likely contain information about the
same protein. Unfortunately, this device cannot be used
with cross-references to the EMBL/GenBank nucleotide
sequence database (Benson et al., 2000; Baker et al.,
2000), because many of its entries encompass multiple
Open Reading Frames.

Both the PDB and SWISS-PROT can be cross-
referenced to ENZYME using EC numbers often listed in
their entries. Additionally, lists of SWISS-PROT entries
are found in ENZYME records. PDB entries in which EC
numbers are omitted are cross-referenced to ENZYME
using information in the corresponding SWISS-PROT
entries.

Sometimes, direct cross-references between two
databases are not available. For example, there are no
cross-references between SWISS-PROT and CATH.
However in a data warehouse environment, one can
reconstruct this missing information using simple queries.
CATH domain identifiers contain the PDB chain des-
ignation. PDB chains are, in turn, cross-referenced to
SWISS-PROT. Using these two pieces of information,
a CATH/SWISS-PROT cross-referencing table, albeit a
somewhat incomplete one, can easily be created.

Many PDB structures are of macromolecular complexes
that contain a set of different protein chains. Fortunately,
both DBREF records cross-referencing PDB to sequence
databases and a significant part of the annotation, i.e.
COMPND and SOURCE records, refer to individual
chains or lists thereof. We try to keep track of cross-
references between PDB and other databases on the
level of individual chains whenever possible. Thus, cross-
referencing tables that include PDB list both PDB IDs and
chain identifiers, represented as PDB ID plus the chain
letter.

Keeping the warehouse up to date
In order to build our warehouse, we mirror the legacy
database ftp archives to a local archive disk, parse the
files into the MySQL database, index the textual data, and
rebuild the cross-reference tables. All of these operations
are performed in a fully automatic mode by Perl scripts.
A master Perl script invokes each of these scripts in an
appropriate order. If any of the scripts fails, the execution
of subsequent steps is aborted, and an e-mail message is
sent to the database administrator. The administrator must
then fix the problem before the update is resumed. The
master script is run as a cron job once a week, which is the
update frequency of PDB and SWISS-PROT.

The database exists in two copies: an internal copy and
a public copy, kept on a separate machine, which runs
a public web server. The scripts that load data into the
database operate on the internal copy. After an update
is completed, the public copy of the database is quickly

replaced by the internal copy, thereby ensuring that the
update-related disruption in the operation of the web
server is kept to a minimum.

THE BIOMOLQUEST SEARCH ENGINE
User interface
The search engine has a simple query form similar to
those of web search engines (not shown). The user can
choose what to search for from a pull-down menu. The
default choice of ‘Any keywords’ lets the user search
virtually the entire textual annotation from all databases.
Other choices include SWISS-PROT or PDB identifier,
EC number, biomolecule name, organism, heterogen in
a PDB entry, resolution of a PDB entry, and length of a
chain in the PDB. Most of these search fields correspond
to several fields in the underlying database. Comparison
operators >, <, =, >=, <= are used in resolution or
chain length queries. If there are two or more query words,
the user can use a radio button menu to make the search
engine match all query words, any of the words, or the
entire phrase. The ‘Advanced search string’ option allows
the user to use an expression of his or her own design.

Results of the BioMolQuest search for ‘ribonuclease
T1’ with default options are listed in Table 1. The search
results are generally organized as a set of trees. The root
of each tree is a ‘hit’ which was found in one of the
legacy databases, for example, by keywords. A hit may
represent an individual protein chain, as in SWISS-PROT
and many PDB entries, or a group of protein chains,
such as a class of enzymes in the ENZYME database,
a class of structural domains in CATH, or a complex
of several co-crystallized distinct chains in the PDB. A
hit is followed by an associated SWISS-PROT entry or
entries, if they are found. SWISS-PROT strives to be a
non-redundant database of protein chains (Bairoch and
Apweiler, 2000), so we assume that each SWISS-PROT
entry corresponds to a distinct chain. This chain can have
one or more structural domains and its structure may have
been reported in one or more of the PDB entries. The
folds of these domains (from CATH) and the PDB entries
are reported for each SWISS-PROT chain. Since this
search engine is intended mostly for scientists interested in
structural biology, the hits and SWISS-PROT chains that
do not have any PDB entries associated with them are not
reported by default. This behavior can be changed at the
advanced query page (not shown).

The search results are displayed as HTML tables, with
relationships between hits and the corresponding SWISS-
PROT, CATH, and PDB entries clearly indicated. The
results are hyperlinked to the legacy database web sites
and the particular legacy database entries.

472



BioMolQuest

Table 1. Results of the BioMolQuest search for ‘ribonuclease T1’

Hit SWISS-PROT PDB

1rn4 1rga 1rls 1gsp 3hoh 7gsp

1rnt 1rgc 1rpf 1rhl 4bir 1fys

RNT1 ASPOR 2rnt 1rgk 1rpg 1ygw 4bu4 1fzu

3rnt 1rgl 1rph 2bir 4gsp 1g02

GUANYL-SPECIFIC 4rnt 1rn1 1bu4 2bu4 4hoh

RIBONUCLEASE T1 5rnt 2aad 1b2m 2gsp 5bir

PRECURSOR 6rnt 2aae 1bir 2hoh 5bu4

7rnt 1lra 1bvi 3bir 5gsp

ENZYME: 8rnt 1trp 1ch0 3bu4 5hoh

3.1.27.3 9rnt 1trq 1det 3gsp 6gsp

Ribonuclease T1 RNMS ASPSA
GUANYL-SPECIFIC 1rds 1rms

RIBONUCLEASE MS

RNSA STRAU 1sar 1gmq 1rge 1rgh

GUANYL-SPECIFIC 2sar 1gmr 1rgf 1rsn

RIBONUCLEASE SA 1gmp 1ay7 1rgg

RNF1 GIBFU 1fus 1rck

GUANYL-SPECIFIC 1fut 1rcl

RIBONUCLEASE F1

1b20 1b2s 1b2z

N/A 1b21 1b2u 1b3s

1b27 1b2x 1box

PDB: 1aqz RNMG ASPRE
Ribotoxin RIBONUCLEASE 1aqz

MITOGILLIN PRECURSOR

The query was run on December 14, 2000. CATH domains are not shown.

Search mechanism
The outline of the searching algorithm. A user query is
applied to each database column index in the following
general order: ENZYME classes, fields of ENZYME
entries, fields of SWISS-PROT entries, fields of PDB
entries, and CATH domain classes. The idea behind this
order of queries is to go from classes of proteins described
in ENZYME to individual non-redundant protein chains
contained in SWISS-PROT, to structures of these chains
contained in the PDB, and finally to domain descriptions.
Each time the query finds a database hit along this path,
the search engine uses cross-referencing tables to retrieve
pointers to all information about the protein chain or
chains covered by the hit. The outline of the search
algorithm is shown below:

1. Search each database field in the order indicated above
2. For each hit:

3. If found previously (e.g. by cross-reference to
a previous hit), then reject

4. Else use cross-reference tables to do the
following:
5. Retrieve all related SWISS-PROT

entries
6. For each SWISS-PROT entry:

7. Retrieve CATH domains
8. Retrieve PDB structures

9. Retrieve related PDB entries not found
in 8

10. End if
11. Next hit

12. Next field

Careful use of cross-references. As we shall see in the
examples below, the use of cross-references provides a
more powerful mechanism of data retrieval than a simple
search of individual database entries. However, cross-
references must be constructed and used with care in order
to avoid spurious search results. One danger of misusing
cross-references lies in the fact that different database
entries of the same protein chain may in fact be different
in ways that are important to the user. For example, if a
user is looking for structures of a protein in a complex
with a certain ligand, he/she may not want to retrieve all
other structures of the same protein in which the ligand
of interest is absent. For that reason, cross-referencing is

473



Y.V.Bukhman and J.Skolnick

automatically turned off if the user searches for properties
that may be unique to each PDB structure. The current
set of search field choices for which cross-referencing is
off includes heterogen, resolution, and chain length. For
other types of queries, the user always has an option to
turn cross-referencing off by using the advanced query
form (not shown) and setting ‘Retrieve molecules related
to database hits’ to ‘none’.

Another danger arises when cross-references are used
to go from the PDB to SWISS-PROT and, further, to
other PDB entries to retrieve all instances of a protein
found by PDB annotation. An increasing number of PDB
entries contain structures of macromolecular complexes
that contain more than one protein. However, the user
is not necessarily interested in all of the structures of
all the components. For example, many proteins are co-
crystallized with antibodies. The user may want to retrieve
all structures of the protein of interest, but not those
of the immunoglobulin. For this reason, we keep cross-
references between the PDB and other databases at the
chain level, rather than at the PDB entry level, whenever
possible. If a hit of a PDB entry has been narrowed down
to a set of chains, only cross-references involving those
chains are used for further information retrieval.

Complex queries by means of repeat searches. Our
searches are carried out on the per database field basis.
This often allows the search engine to avoid hitting false
positives; if all of the search terms are in the same
database field, they are likely to relate to the same concept.
However, sometimes a user may be interested in running
complex queries incorporating more than one database
field. For example, if one wishes to find all ribonucleases
in E.coli, one must generally look for ‘ribonuclease’ in the
molecule definition fields and for ‘Escherichia’ and ‘coli’
in source organism fields. In the current implementation
of our user interface, this kind of inquiry can be run
in 2 steps: one can find all ribonucleases and then limit
the result set to entries whose organism is E.coli. This
implementation is the price for having a simple, one-entry
query form. Of course, it would be possible to create a
form with 2 or 3 entries combined by Boolean operators if
there is a subsequent popular demand for such a utility.

In a repeat search, as described above, we also make
use of cross-references to produce a meaningful result.
The results of the first search can be represented as
an array of trees, with each tree having three levels
(see Table 1). The database entry initially matched by
the search is the root of the tree, the second level is
populated by related SWISS-PROT entries, and the third
level is populated by CATH and PDB entries related to
each SWISS-PROT entry. A few more PDB entries that
are found to be related to the root, but not to any of
the SWISS-PROT entries, may also reside at the second

level. When a second search is run over the result set,
each database entry found by it is checked against each
tree in the result set. A node of a tree is marked as
validated if the new hit is to the same database entry. The
validation is transferred down the tree to database entries
that may be considered instances of the validated entity,
i.e. from the ENZYME entry to related SWISS-PROT
entries representing proteins that are instances of the
enzyme class, and from a SWISS-PROT entry to related
PDB entries containing structures of the SWISS-PROT
protein. The validation is also transferred up the tree from
child to parent, thereby preserving the branch on which
the validated node is located. However, validation is not
transferred to siblings of a validated node. For example, if
one seeks to limit one’s result set by the resolution of the
PDB structures, then the validation of a PDB structure that
satisfies new query conditions should not be transferred to
other structures of the same protein that do not. The nodes
that are left unvalidated at the end of the search are deleted
from the result set.

Example search
Suppose we have searched for ‘ribonuclease T1’
with the default settings, i.e. we are searching entire
annotation in all databases, using cross-references,
and matching both query words. Ribonuclease T1 is
the name of the enzyme EC 3.1.27.3. This enzyme
is a ribonuclease that performs ‘two-stage endonu-
cleolytic cleavage to 3′-phosphomononucleotides
and 3′-phosphooligonucleotides ending in G-P with
2′, 3′-cyclic phosphate intermediates’ (see http:
//www.expasy.cbr.nrc.ca/cgi-bin/enzyme-search-ec).
Ribonuclease T1 is found in Aspergillus oryzae. Similar
enzymes are found in several other fungi species as well
as in some bacteria. Bacterial enzymes are apparently
unrelated to eukaryotic enzymes by sequence, but are
similar in structure, specificity, and mechanism of action
(Sevcik et al., 1990). Importantly, the ribonuclease T1
enzymes found in different species, even the ones closely
related to the A.oryzae, are often called by different
names: i.e. ribonuclease MS, ribonuclease F1, etc.

The results of this search are summarized in Ta-
ble 1 (CATH domains are not shown). In addition to
RNT1 ASPOR, the SWISS-PROT entry for the A.oryzae
enzyme, the search engine also retrieves RNMS ASPSA,
RNSA STRAU, and RNF1 GIBFU, each with a cor-
responding set of PDB entries. These are all enzymes
of the class 3.1.27.3. They are found in spite of the
name differences mentioned above. The search engine
also retrieves nine additional PDB entries. These are
structures of barnase, a bacterial T1-like ribonuclease,
and an additional structure RNSA STRAU, which has
not been picked up by cross-references to SWISS-PROT.
Even though RNBR BACAM, the SWISS-PROT entry

474



BioMolQuest

for barnase, and the 3.1.27.3 entry in ENZYME are not
cross-referenced in either database, these PDB entries
have still been found. The reason for that is that EC
3.1.27.3 is mentioned in their PDB molecule definitions.
An additional PDB structure, found through its PDB
annotation, is 1aqz, a ribotoxin related to ribonuclease T1
(Kao and Davies, 1995).

Altogether, the search engine finds 81 ribonuclease T1
entries in PDB. Four of these can be considered false pos-
itives. There are three PDB entries that are actually struc-
tures of a different ribonuclease (ribonuclease A), which
were mistakenly cross-referenced to RNT1 ASPOR. 1aqz
is not exactly a ribonuclease T1 enzyme, either, although
it is related; whether this should be considered a true or
false positive may depend on the purposes of the user.

Most of the PDB entries are shown to be the structures
of four SWISS-PROT proteins. A user who is interested in
ribonuclease T1 from A.oryzae only will have no difficulty
separating structures of interest from all the others because
it is clearly shown in the search result pages with which
SWISS-PROT entry each PDB structure is associated.

Query performance
The search engines and search mechanisms. We have
compared the performance of some simple keyword
queries on our search engine to some other non-
proprietary search engines available. The performance of
the queries have been evaluated in terms of precision and
recall of the retrieval of PDB entries. The enhancement
of the retrieval of PDB entries and related information by
keywords is the main goal of BioMolQuest in its present
form. Other systems, such as SRS servers and DBGet,
provide more broad functionality.

The search engines to which we have compared
BioMolQuest to are RCSBs SearchLite at http:
//www.rcsb.org/pdb/searchlite.html, SRS server at
EBI at http://www.srs.ebi.ac.uk/, and the SRS server at
the Indiana University at http://www.iubio.bio.indiana.
edu/srs6bin/cgi-bin/wgetz?-page+top. We also included
in the comparison searches through InterPro at the EBI
SRS server. The search procedures were as follows:

• At BioMolQuest and RCSB, simply enter the query
and hit the Search button.

• At EBI SRS, do a two-step search to utilize cross-
references:

• search SWALL (a more complete SWISS-PROT)
+ enzyme databases (LENZYME, BRENDA, EN-
ZYME, EMP, UENZYME) + PDB + PDBFinder,
or search InterPro

• cross-link all the results to PDB and PDBFinder

• At Indiana SRS, do a two-step search:

• search SWISS-PROT + SWISSNEW + ENZYME
+ LENZYME + PDB

• cross-link all the results to PDB

Query performance measurement and ideal sets. The
performance of the queries was measured in terms of
precision, defined as the ratio of the number of true
positives to the total number of hits, recall, defined as
the ratio of the number of true positives to the number of
entries in an ideal set, and response time.

The ideal set is the set of all PDB entries known to
be relevant to a query. In order to be able to construct
an ideal set, one has to clarify the exact meaning of the
query. For example, when searching for ‘ribonuclease and
T1’, does one mean ‘ribonuclease T1’ the enzyme class
3.1.27.3, or the particular ‘ribonuclease T1’ of A.oryzae?
We have generally taken the position of preferring broader
definitions of true positives to more narrow ones, since
having to weed out a few less interesting hits is usually
less damaging to the users than not finding what they were
looking for. Our queries and the corresponding definitions
of true positives are listed here:

• ribonuclease and T1: an enzyme catalyzing two-stage
endonucleolytic cleavage to 3′-phosphomononucleo-
tides and 3′-phosphooligonucleotides ending in G-
P with 2′, 3′-cyclic phosphate intermediates (some
enzymes commonly included in this class, such as
ribonuclease Ms of Aspergillus saitoi, may catalyze
cleavage at nucleotides other than G, but they still have
a preference for the G’s; these enzymes are considered
true positives);

• glutamine and amidotransferase: an enzyme cat-
alyzing the transfer of NH2 from Gln to some other
molecule, thereby producing Glu, or the reverse reac-
tion; includes components of multi-chain complexes
where one chain may hydrolyze Gln and another chain
may attach NH2 to a different molecule;

• sodium and channel and inhibitor: a peptide inhibiting
the normal function of a sodium channel.

The ideal sets were constructed using the following
procedure:

• Run query on each of the search engines,

• assign true and false positives based on the annota-
tion of the hits;

• combine all true positives into a single list.

• Run BLAST on a true positive,

• examine the annotation of the BLAST hits which
are not already on the list of true positives to see if
any new true positives have been found;

475



Y.V.Bukhman and J.Skolnick

Table 2. Comparison of search engine performance

Search engine True positives False positives False negatives Precision Recall Average timea (s) Minimal timea (s)

Ribonuclease and T1

BioMolQuest 77 4 27 0.95 0.74 10 10
SRS EBIb 70 6 34 0.92 0.67 64 55
SRS Indianab 64 3 40 0.96 0.62 33 32
RCSB 59 10 45 0.86 0.57 30 18

Glutamine and amidotransferase

BioMolQuest 22 0 0 1.00 1.00 13 13
SRS EBIb 22 0 0 1.00 1.00 56 50
SRS Indianab 21 0 1 0.95 0.95 30 29
InterPro/SRSb,c 14 6 8 0.70 0.64 21 9
RCSB 18 0 4 1.00 0.82 8 5

Sodium and channel and inhibitor

BioMolQuest 31 0 4 1.00 0.89 10 9
SRS EBIb 29 3 6 0.91 0.83 76 64
SRS Indianab 29 0 6 1.00 0.83 37 36
RCSB 11 0 24 1.00 0.31 6 4

The queries were used to retrieve PDB entries as described in Section Query performance.
The queries have been run on December 14, 2000. The exact results will obviously change with time as the databases constantly grow and change.
a Six measurements done on December 19–20, 2000 between 9 a.m. and 10 p.m. US Central time. The clock was stopped when a result page began to load.
b Sum of three steps, as discussed in Section Query performance measurement and ideal sets.
cEBI SRS server; no results obtained for the other two queries; InterPro does not cross-link to PDB on the Indiana SRS server.

• if any of the known true positives have not been
found by the BLAST search, use one of them as a
query for another BLAST;

• repeat until all of the known true positives have
been found by at least one BLAST search.

• Use literature references to confirm each true positive,

• use references from SWISS-PROT entries to con-
firm them, then run BLAST of the SWISS-PROT
sequence against PDB to confirm corresponding
PDB entries; use e-value of 10−10 and sequence
identity � 90% as the cut-off (somewhat less strin-
gent cut-offs had to be used for some short-chain
sodium channel inhibitor structures which were
missing a few residues)

• if there are no relevant references in SWISS-PROT,
search PubMed for protein names

• examine review papers (Sevcik et al., 1990; Pos-
sani et al., 1999; Norton, 1991).

Response times were measured with a timer. The timer
was started when a query was submitted and stopped when
a search result page began to load. For SRS servers, we
added up the times of the three operations involved in a
search using cross-references. The first operation is to run
the initial query; the second operation is to tell the SRS

server that we wish to cross-link the entire result set; the
third operation is to specify that the cross-link should be
to the PDB, upon which the server finds the target PDB
entries. Each of these steps involves submitting a form to
the server and waiting for it to respond. Response times
reported in Table 2 are the averages of six measurements
made at various times of the day between 9 a.m. and 10
p.m. US Central time over 2 days. The measurements
have been carried out at the Becker Medical Library on
the Washington University campus to make sure that the
BioMolQuest data have to travel through a network like
the data from the other search engines, as network delays
are likely to affect the response times.

The results. Table 2 shows the comparison of the search
results by the BioMolQuest and other search engines.
BioMolQuest and SRS tend to have better recall than
RCSB while maintaining comparable precision. InterPro
does not have an entry for ribonuclease T1, and the entries
for sodium channel inhibitor fail to cross-reference to
PDB. InterPro also seems to fail to cross-reference to
PDB at the Indiana SRS server. The search of InterPro
for glutamine amidotransferase with subsequent cross-
reference to PDB at the EBI server performs relatively
poorly.

The main reason for the better recalls of BioMolQuest
and the SRS servers compared to the RCSB is the use of

476



BioMolQuest

database cross-references to retrieve all instances of the
same protein or a class of proteins in all of the legacy
databases. The use of cross-references creates the effect
of amplifying the annotation content: it is sufficient to
find the search terms in one of the database instances
of a protein or a protein class to retrieve all or most
of the other instances. This allows the search engine to
find database entries where annotation is incomplete or
alternative terms are used. While performance of SRS is
close to that of BioMolQuest, the user must possess a
certain degree of sophistication to use it the way we did.
Casual users would probably just use an SRS server to
search the PDB directly, which would not give them any
advantage over using the RCSB web site. Simplicity of the
user interface is an important factor in web design. While
scientists are generally more sophisticated than average
web users, most of them would rather spend their energies
on their research topics than on the subtleties of database
querying techniques.

Table 2 also shows the time it takes BioMolQuest
and other servers to deliver results of a query. The
times reported for the SRS servers are the sums of
three operations, as discussed above. One should not
overinterpret the exact times we report, as they are almost
certainly affected by factors that have nothing to do with
the search engine design, such as network delays and
differences in the server hardware and loads. We report
the minimal observed times along with the averages, as
they reflect the server performance under light load and/or
minimal delays in the network. It is obvious that the
BioMolQuest response times are comparable to those of
the other search engines for queries of moderate size.
BioMolQuest does slow down considerably for larger
queries. For example, if one searches for ‘transcription
and factor’, the search engine has to go through about
5000 SWISS-PROT entries, finding 356 PDB entries in
the end. The average BioMolQuest response time to this
query is 59 s. RCSB seems to slow down for large queries
as well (42 s average for ‘transcription and factor’), while
SRS servers are not affected.

DISCUSSION
We have implemented a search engine based on a re-
lational database of annotations imported from PDB,
SWISS-PROT, ENZYME, and CATH (Berman et al.,
2000; Bairoch and Apweiler, 2000; Bairoch, 2000;
Orengo et al., 1997). This search engine allows for more
powerful annotation searches than is possible with any
of the individual legacy databases. Information from
the legacy databases is integrated using inter-database
cross-references provided in the legacy database entries or
inferred when necessary and/or possible. Automatic use of
these cross-references by the search engine significantly

improves recall of keyword queries without any additional
effort on the part of the user. At the same time, application
of the queries to individual database fields, rather than
entire entries, ensures good precision. The output of the
queries is presented in a logical order that clarifies the
relationships among the retrieved database entries. A
complex query is possible through repeat searches that
limit the results of the previous searches. This search
engine can be used as a convenient gateway to the legacy
databases, particularly the PDB.

BioMolQuest should be considered a work in progress.
Its current weaknesses include sluggish response times
for large queries and the lack of quality control of
cross-references. The first problem will be addressed by
better software design, possibly including parallelization
of the queries. The cross-references shall be verified
by sequence identity. Other directions of BioMolQuest
development include integrating additional resources into
the service, such as metabolic pathway information and
protein structures predicted by our group.

ACKNOWLEDGEMENTS
This research was supported in part by NIH grant No. GM-
48835 of the Division of General Medical Sciences.

REFERENCES
An,J., Nakama,T., Kubota,Y. and Sarai,A. (1998) 3DinSight: an

integrated relational database and search tool for structure,
function and property of biomolecules. Bioinformatics, 14, 188–
195.

Anahory,S. and Murray,D. (1997) Data Warehousing in the Real
World. Addison-Wesley, Longman, UK.

Apweiler,R., Attwood,T.K., Bairoch,A., Bateman,A., Birney,E.,
Bucher,P., Codani,J.-J., Corpet,F., Croning,M.D.R., Durbin,R.,
Etzold,T., Fleischmann,W., Gouzy,J., Hermjakob,H., Jonassen,I.,
Kahn,D., Kanapin,A., Schneider,R., Servant,F. and Zdobnov,E.
(2000) InterPro—an integrated documentation resource for pro-
tein families, domains and functional sites. CCP11 Newsletter,
10.

Bairoch,A. (2000) The ENZYME database in 2000. Nucleic Acids
Res., 28, 304–305.

Bairoch,A. and Apweiler,R. (2000) The SWISS-PROT protein
sequence database and its supplement TrEMBL in 2000. Nucleic
Acids Res., 28, 45–48.

Baker,W., van den Broek,A., Camon,E., Hingamp,P., Sterk,P.,
Stoesser,G. and Tuli,M.A. (2000) The EMBL nucleotide se-
quence database. Nucleic Acids Res., 28, 19–23.

Barker,W.C., Garavelli,J.S., Huang,H., McGarvey,P.B., Orcutt,B.,
Srinivasarao,G.Y., Xiao,C., Yeh,L.S., Ledley,R.S., Janda,J.F.,
Pfeiffer,F., Mewes,H.W., Tsugita,A. and Wu,C. (2000) The
Protein Information Resource (PIR). Nucleic Acids Res., 28, 41–
44.

Benson,D.A., Karsch-Mizrachi,I., Lipman,D.J., Ostell,J.,
Rapp,B.A. and Wheeler,D.L. (2000) GenBank. Nucleic
Acids Res., 28, 15–18.

477



Y.V.Bukhman and J.Skolnick

Berman,H.M., Westbrook,J., Feng,Z., Gilliland,G., Bhat,T.N.,
Weissig,H., Shindyalov,I.N. and Bourne,P.E. (2000) The Protein
Data Bank. Nucleic Acids Res., 28, 235–242.

Branden,C. and Tooze,J. (1991) Introduction to Protein Structure.
Garland, New York.

Creighton,T.E. (1993) Proteins. Structures and Molecular Proper-
ties. Freeman, New York.

DuBois,P. (2000) MySQL. New Riders, Indianapolis.
Etzold,T., Ulyanov,A. and Argos,P. (1996) SRS: information re-

trieval system for molecular biology data banks. Meth. Enzymol.,
266, 114–128.

Fetrow,J.S. and Skolnick,J. (1998) Method for prediction of pro-
tein function from sequence using the sequence-to-structure-to-
function paradigm with application to glutaredoxins/thioredoxins
and T1 ribonucleases. J. Mol. Biol., 281, 949–968.

Fujibuchi,W., Goto,S., Migimatsu,H., Uchiyama,I., Ogiwara,A.,
Akiyama,Y. and Kanehisa,M. (1998) DBGET/LinkDB: an inte-
grated database retrieval system. Pac. Symp. Biocomput., 3, 681–
692.

Goto,S., Nishioka,T. and Kanehisa,M. (2000) LIGAND: chemical
database of enzyme reactions. Nucleic Acids Res., 28, 380–382.

Hofmann,K., Bucher,P., Falquet,L. and Bairoch,A. (1999) The
PROSITE database, its status in 1999. Nucleic Acids Res., 27,
215–219.

Holm,L. and Sander,C. (1996) Mapping the protein universe.
Science, 273, 595–602.

Kanehisa,M. (2000) Post-Genome Informatics. Oxford University
Press, Oxford.

Kao,R. and Davies,J. (1995) Fungal ribotoxins: a family of naturally
engineered targeted toxins? Biochem. Cell Biol., 73, 1151–1159.

Kawabata,T., Ota,M. and Nishikawa,K. (1999) The Protein Mutant
Database. Nucleic Acids Res., 27, 355–357.

Murzin,A.G., Brenner,S.E., Hubbard,T. and Chothia,C. (1995)
SCOP: a structural classification of proteins database for the
investigation of sequences and structures. J. Mol. Biol., 247, 536–
540.

Norton,R.S. (1991) Structure and structure-function relationships
of sea anemone proteins that interact with the sodium channel.
Toxicon, 29, 1051–1084.

Orengo,C.A., Michie,A.D., Jones,S., Jones,D.T., Swindells,M.B.
and Thornton,J.M. (1997) CATH—a hierarchic classification of
protein domain structures. Structure, 5, 1093–1108.

Possani,L.D., Becerril,B., Delepierre,M. and Tytgat,J. (1999) Scor-
pion toxins specific for Na+-channels. Eur. J. Biochem., 264,
287–300.

Sevcik,J., Sanishvili,R.G., Pavlovsky,A.G. and Polyakov,K.M.
(1990) Comparison of active sites of some microbial ribonucle-
ases: structural basis for guanylic specificity. Trends Biochem.
Sci., 15, 158–162.

Thornton,J.M., Orengo,C.A., Todd,A.E. and Pearl,F.M. (1999)
Protein folds, functions and evolution. J. Mol. Biol., 293, 333–
342.

Wall,L., Christiansen,T. and Schwartz,R.L. (1996) Programming
Perl. O’Reilly, Sebastopol, CA.

478


