Chem. Pharm. Bull. 36(11)4441--4446(1988)

Studies on Chemical Constituents of Antitumor Fraction from *Periploca sepium*. V. Structures of New Pregnane Glycosides, Periplocosides J, K, F and O

HIDEJI ITOKAWA,* JUNPING XU, and KOICHI TAKEYA

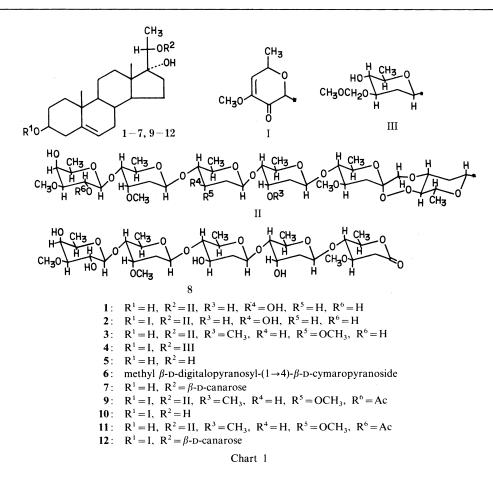
Tokyo College of Pharmacy, Horinouchi 1432-1, Hachioji, Tokyo 192-03, Japan

(Received March 17, 1988)

Four new pregnane glycosides, named periplocosides J, K, F and O, have been isolated from the antitumor fraction of *Periploca sepium* (Asclepiadaceae). Their structures were established by various nuclear magnetic resonance techniques and chemical evidence.

Keywords——*Periploca sepium*; Asclepiadaceae; pregnane glycoside; 3,7-dideoxy-4-*O*-methyl-D-*gluco*-2-heptulose; 2D-NMR; periplocoside

In the preceding papers of this series,¹⁻⁴) we described eight new pregnane glycosides, named periplocosides A, B, C, D, E, L, M and N, which were isolated from the antitumor fraction of the CHCl₃ extract of *Periploca sepium* (Asclepiadaceae). These structures were clarified with the aid of the two-dimensional nuclear magnetic resonance (2D-NMR) technique and partial acid hydrolysis. The present paper deals with the isolation and structural elucidations of four new pregnane glycosides, S-16, 17, 18 and 19, named periplocosides J, K, F and O, respectively.


Periplocoside J (1), colorless powder, mp 178–181 °C, $[\alpha]_{D}^{20}$ +24.13° (*c*=0.12, MeOH) gave the molecular formula $C_{61}H_{100}O_{23}$, based on its $[M + Na + H]^+$ peak at m/z 1224 and $[M + K + H]^+$ peak at m/z 1240 in the secondary ion mass spectrum (SIMS). The proton and carbon-13 nuclear magnetic resonance (¹H- and ¹³C-NMR) (Table I) spectral data showed five anomeric signals [δ 4.28 (d). 4.54, 4.57, 4.75, 4.99 (dd, respectively)], seven doublet methyl signals due to 6-deoxysugar and C-21 of the aglycone (δ 1.23, 1.25, 1.28, 1.29, 1.31, 1.32, 1.35), three methoxyl signals (δ 3.44, 3.46, 3.51) and two characteristic signals due to 3.7-dideoxy-4-*O*-methyl-D-gluco-2-heptulose² [δ 4.72, 5.13 (each d, J = 7.5 Hz) and 86.38 (t), 113.70 (s)], and showed a glycosylation shift at C-20 of the aglycone (+10.7 ppm). The hydrolysis of 1 with $0.05 \text{ N} \text{ H}_2\text{SO}_4$ in 50% aqueous MeOH gave Δ^5 -pregnene 3β , 17α , 20(S)-triol (5)¹) as the aglycone and a disaccharide (6) which was confirmed to be methyl β -D-digitalopyranosyl- $(1 \rightarrow 4)$ - β -D-cymaropyranoside.^{2.5)} In addition, digitalose, digitoxose, canarose and cymarose from the hydrolyzate were identified by direct thin-layer chromatographic (TLC) comparison with authentic samples. From the ${}^{1}H{}^{-1}H$ 2D-NMR spectrum, the mutual relations from the anomeric protons to C-6 methyl protons due to four 2,6-dideoxyhexoses and one digitalose, and from the C-3 proton to the C-7 methyl proton due to 3,7-dideoxy-4-O-methyl-D-gluco-2heptulose were fully elucidated. In order to confirm each coupling constant due to those mutual relations of the sugar moiety, the J-resolved 2D-NMR spectrum was measured to reveal $J_{6,5} = 6.5$ Hz, $J_{5,4} = 1.5$ Hz, $J_{4,3} = 3.5$ Hz, $J_{3,2} = 9.4$ Hz, $J_{2,1} = 7.8$ Hz due to one β -Ddigitalose, $J_{6,5} = 6.2$ Hz, $J_{5,4} = 9.5$ Hz, $J_{4,3} = 3.5$ Hz, $J_{2,1} = 9.8$, 1.8 Hz due to one β -D-cymarose, $J_{6,5} = 6.0 \text{ Hz}, J_{5,4} = 9.5 \text{ Hz}, J_{4,3} = 8.6 \text{ Hz}, J_{2,1} = 9.6, 1.7 \text{ Hz}$ due to two β -D-canarose, $J_{6,5} = 6.1 \text{ Hz}, J_{5,4} = 9.8 \text{ Hz}, J_{4,3} = 3.0 \text{ Hz}, J_{2,1} = 9.8, 1.8 \text{ Hz}$ due to one β -D-digitoxose and $J_{7,6} = 0.1 \text{ Hz}$ 6.5 Hz, $J_{6.5} = 9.8$ Hz, $J_{5.4} = 8.2$ Hz, $J_{1a,1b} = 7.5$ Hz due to one 3,7-dideoxy-4-O-methyl-D-gluco2-heptulose.

On the partial hydrolysis of **1** with $0.001 \text{ N H}_2\text{SO}_4$ in MeOH at room temperature, the hydrolyzate was found to contain **5**, periplocoside N [Δ^5 -pregnene 3β , 17α , 20(S)-triol 20- β -D-canaropyranoside] (7)^{3.6)} and **6** by TLC comparison with authentic samples, as well as the product (**8**). Therefore, it was considered that canarose was the initial sugar in the sugar chain. The ¹H-NMR, ¹³C-NMR (Table I) and infrared (IR) spectra of **8** showed the presence of five doublet methyl protons (δ 1.22, 1.24, 1.27, 1.34, 1.44), three methoxyl groups (δ 3.39, 3.42, 3.46), one δ -lactone (δ 168.09 and 1750 cm⁻¹) and four anomeric signals (δ 4.39, 4.54, 4.75, 4.99). By comparison of its ¹H-, ¹³C- and ¹H-¹H 2D-NMR spectra with those of **1** and D-

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	t t t t t t t t t t t	37.25 31.87 71.74 42.30 140.71 121.63 31.94 31.67 49.64 36.66 20.58 36.90 45.34	37.37 29.41 78.62 38.56 140.35 122.01 31.92 31.92 49.72 36.74 20.58	37.29 31.89 71.76 42.34 140.75 121.63 31.98 31.71 49.69 36.77	37.38 29.41 78.64 38.52 140.37 121.96 31.94 31.94 49.74	Heptulos 1 2 3 4 5 6 7	t s t d d	86.38 113.70 36.66 78.28 82.61 69.80	86.39 113.72 36.74 78.31 82.64 69.82	86.39 113.73 36.77 78.31 82.64
3 d 4 t 5 s 6 d 7 t 8 d 9 d 10 s 11 t 12 t 13 s 14 d 15 t 16 t 17 s 18 q 20 d 21 q 1' d 2' s 3' s 4' d	d t t d d d d t t t t t	71.74 42.30 140.71 121.63 31.94 31.67 49.64 36.66 20.58 36.90	78.62 38.56 140.35 122.01 31.92 31.92 49.72 36.74 20.58	71.76 42.34 140.75 121.63 31.98 31.71 49.69	78.64 38.52 140.37 121.96 31.94 31.94	1 2 3 4 5 6 7	t s t d d	113.70 36.66 78.28 82.61 69.80	113.72 36.74 78.31 82.64	113.73 36.77 78.3 82.64
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	t s d d d d d t t s s d t	71.74 42.30 140.71 121.63 31.94 31.67 49.64 36.66 20.58 36.90	38.56 140.35 122.01 31.92 31.92 49.72 36.74 20.58	42.34 140.75 121.63 31.98 31.71 49.69	38.52 140.37 121.96 31.94 31.94	3 4 5 6 7	t d d	36.66 78.28 82.61 69.80	36.74 78.31 82.64	36.7 78.3 82.64
4 t 5 s 6 d 7 t 8 d 9 d 10 s 11 t 12 t 13 s 14 d 15 t 16 t 17 s 18 q 20 d 21 q 1' d 2' s 3' s 4' d	s d d d d d s s t t t	140.71 121.63 31.94 31.67 49.64 36.66 20.58 36.90	140.35 122.01 31.92 31.92 49.72 36.74 20.58	140.75 121.63 31.98 31.71 49.69	140.37 121.96 31.94 31.94	4 5 6 7	d d d	78.28 82.61 69.80	78.31 82.64	78.3 82.64
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	d t d d t t t t	121.63 31.94 31.67 49.64 36.66 20.58 36.90	122.01 31.92 31.92 49.72 36.74 20.58	121.63 31.98 31.71 49.69	121.96 31.94 31.94	5 6 7	d d	82.61 69.80	82.64	82.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	t d d t t t t t	31.94 31.67 49.64 36.66 20.58 36.90	31.92 31.92 49.72 36.74 20.58	31.98 31.71 49.69	31.94 31.94	6 7	d	69.80		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	d d s t t s d t	31.67 49.64 36.66 20.58 36.90	31.92 49.72 36.74 20.58	31.71 49.69	31.94	7			69.82	(0.0)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	d s t t d t	49.64 36.66 20.58 36.90	49.72 36.74 20.58	49.69			C			69.82
$\begin{array}{cccc} 9 & d \\ 10 & s \\ 11 & t \\ 12 & t \\ 13 & s \\ 14 & d \\ 15 & t \\ 16 & t \\ 17 & s \\ 18 & q \\ 19 & q \\ 20 & d \\ 21 & q \\ 1' & d \\ 2' & s \\ 3' & s \\ 4' & d \\ \end{array}$	s t s d	36.66 20.58 36.90	36.74 20.58		49.74	014	q	17.99	18.01	18.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	s t s d	20.58 36.90	20.58	36.77		OMe	q	57.59	57.59	57.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	t S d t	36.90	20.58		36.74	Digitoxo	se or (cymarose		
12 t 13 s 14 d 15 t 16 t 17 s 18 q 19 q 20 d 21 q 1' d 2' s 3' s 4' d	t S d t	36.90		20.61	20.59	1	d	98.50	98.50	98.5
13 s 14 d 15 t 16 t 17 s 18 q 19 q 20 d 21 q 1' d 2' s 3' s 4' d	s d t		36.89	36.93	38.44	2	t	38.40	38.45	36.7
14 d 15 t 16 t 17 s 18 q 19 q 20 d 21 q 1' d 2' s 3' s 4' d	d t		45.37	45.37	45.38	3	d	69.21	68.89	77.6
15 t 16 t 17 s 18 q 19 q 20 d 21 q 1' d 2' s 3' s 4' d	t	51.08	51.12	51.11	51.14	4	d	82.04	82.05	82.5
16 t 17 s 18 q 19 q 20 d 21 q 1' d 2' s 3' s 4' d		23.48	23.47	23.50	23.49	5	d	66.78	66.80	68.8
17 s 18 q 19 q 20 d 21 q 1' d 2' s 3' s 4' d		30.97	31.00	31.00	31.02	6	q	17.83	17.83	18.2
18 q 19 q 20 d 21 q 1' d 2' s 3' s 4' d		85.45	85.47	85.46	85.48	OMe	q			58.0
19 q 20 d 21 q 1' d 2' s 3' s 4' d		14.14	14.14	14.15	14.15	Canarose		marose		
20 d 21 q 1' d 2' s 3' s 4' d		19.40	19.35	19.40	19.36	1	d	100.43	100.46	99.7
21 q 1' d 2' s 3' s 4' d		85.45	85.47	85.46	82.86	2	t	38.40	38.56	35.5
1' d 2' s 3' s 4' d		17.99	18.01	18.00	18.07	3	d	70.53	70.55	77.6
2' s 3' s 4' d			97.30		97.32	4	d	85.45	85.48	82.5
3′ s 4′ d			185.87		185.91	5	d	69.40	69.42	68.4
4′ d			147.85		147.88	6	q	17.83	17.83	18.24
			118.49		118.49	OMe	-1			58.0
			68.89		68.89	Cymarose				
6′ q			23.01		23.03	1	d	99.29	99.32	99.7
	q		54.98		54.97	2	t	35.45	35.49	35.2
Canarose	1					3	d	77.34	77.35	77.34
1 d	d	100.82	100.82	100.82	100.80	4	d	82.61	82.64	83.0
2 t		38.40	38.42	38.41	37.76	5	d	68.25	68.28	68.4
	d '	77.03	77.02	77.03	81.45	6	q	18.23	18.22	18.2
4 d		79.19	79.22	79.22	75.35	OMe	q	58.51	58.52	58.2
	d	69.95	69.96	70.00	71.79	Digitalos				
	q	17.06	17.06	17.06	17.01	1	d	104.62	164.60	104.6
S Y	7	11.00	1,.00	11.00	96.98 t	2	d	70.52	70.55	70.7
					(-OCH ₂ O-)	3	d	82.95	82.85	83.0
					55.74 q	4	d	67.79	68.01	68.1
					(OMe)	5	d	70.67	70.72	70.7
					(0110)	6	q	16.49	16.49	16.4
						OMe	q	57.69	57.69	57.6

TABLE I. ¹³C Chemical Shifts of Periplocosides J (1), K (2), F (3) and O (4)

The measurements were made on a Bruker AM400 instrument in CDCl₃ with TMS as an internal reference and are expressed in terms of ppm. Assignments of methoxyl groups due to canarose, heptulose, cymarose and digitalose may be interchanged.

oleandronic δ -lactone,⁷⁾ it has become apparent that **8** consists of β -D-digitalose, β -D-digitalose, β -D-canarose, β -D-cymarose and D-oleandronic δ -lactone. The sequence of each sugar in **8** was deduced to be as shown in Chart 1, because cross signals between the C-1 positional proton (H-1) of cymarose and H-4 of canarose, and H-1 of canarose and H-4 of digitoxose were observed in the ¹H-¹H two-dimensional nuclear Overhauser enhancement and exchange spectroscopy (2D-NOESY) spectrum. Consequently, the structure of **8** was determined to be β -D-digitalopyranosyl-(1 \rightarrow 4)- β -D-cymaropyranosyl-(1 \rightarrow 4)- β -D-canaropyranosyl-(1 \rightarrow 4)- β -D-digitoxopyranosyl-(1 \rightarrow 4)- β -D-digitoxop

In the ¹³C-NMR spectrum of 1, the chemical shifts of signals due to 3,7-dideoxy-4-*O*-methyl-D-gluco-2-heptulose and initial canarose moieties in the sugar chain were coincident with those of periplocoside A (9).^{2,9} In particular, the signals at C-3 and C-4 of the initial canarose were also shifted downfield about 5.4 and 1.8 ppm, respectively, in comparison with those of periplocoside N (7).³ In addition, a positive color reaction for peroxide was observed.¹¹ Consequently, we considered that the hydroxyl groups at C-1 and C-2 of the heptose in the sugar chain of 1 are respectively combined with C-3 and C-4 of the canarose, in a peroxide form at only the latter bond, and the hydrolyzate 8 results from fission of this O–O bond.³ From the above results, the structure of periplocoside J (1) was established as Δ^5 -pregnene 3β , 17α , 20(S)-triol 20-O- β -D-digitalopyranosyl- $(1 \rightarrow 4)$ - β -D-cymaropyranosyl- $(1 \rightarrow 4)$ - β -D-canaropyranosyl- $(1 \rightarrow 4)$ - β -D-canaropyranosyl-(2-4)-dioxy- $(1 \rightarrow 3)$ - β -D-canaropyranoside.

Periplocoside K (2), colorless powder, mp 208–212 °C, $[\alpha]_{D}^{20}$ –4.76° (c=0.08, MeOH)

gave the molecular formula $C_{68}H_{108}O_{26}$ from its $[M + Na]^+$ at m/z 1363 and $[M + K]^+$ at m/z 1379 in the SIMS. Compound **2** was hydrolyzed with $0.05 \times H_2SO_4$ in 50% aqueous MeOH to afford Δ^5 -pregnene 3β , 17α , 20(S)-triol 3-O-(4', 6'-dideoxy-3'-O-methyl- Δ^3' -D-2'hexosulopyranoside) (**10**),¹⁾ **6**, cymarose, canarose, digitalos and digitoxose, which were identified by direct TLC comparison with authentic samples. The ¹³C-NMR spectrum of **2** showed six anomeric signals due to one cymarose, one digitoxose, one digitalose, two canarose, one 4,6-dideoxy-3-O-methyl- Δ^3 -D-2-hexosulose and two characteristics signals [δ 113.72 (s), 86.39 (t)] due to 3,7-dideoxy-4-O-methyl-D-gluco-2-heptulose other than signals due to **5**, and showed a glycosylation shift at C-20 of the aglycone. Also, it gave a positive color reaction for peroxide,¹¹⁾ and the ¹H- and ¹³C-NMR spectra of **2** were compatible with those of **1** except for the signals due to the 4',6'-dideoxy-3'-O-methyl- $\Delta^{3'}$ -D-2'-hexosulose moiety. Therefore, **2** was deduced to be Δ^5 -pregnene- 3β , 17α ,20(S)-triol 3-O-(4',6'-dideoxy-3'-Omethyl- $\Delta^{3'}$ -D-2'-hexosuloside) 20-O-(β -D-digitalopyranosyl-($1 \rightarrow 4$)- β -D-cymaropyranosyl-($1 \rightarrow 4$)- β -D-canaropyranosyl-($1 \rightarrow 4$)- β -D-digitoxopyranosyl-($1 \rightarrow 5$)-3,7-dideoxy-4-O-methyl- α -D-gluco-2-heptulopyranosyl-(2-4)-dioxy-($1 \rightarrow 3$)- β -D-canaropyranoside).

Periplocoside F (3), colorless powder, mp 195—198 °C, $[\alpha]_D^{20} + 8.1^\circ$ (c = 0.07, MeOH) was hydrolyzed in the same way as for 1 to furnish 5, canarose, cymarose and digitalose which were identified by direct TLC comparison with authentic samples. The ¹H- and ¹³C-NMR signals of 3 were similar to those of periplocoside E (11)³ except for the signals due to the acetyl group at C-2 of digitalose in the terminal sugar of the sugar chain. Also, it gave a positive color reaction for peroxide,¹¹ and a glycosylation shift in the ¹³C-NMR spectrum of 3 was observed at C-20 of its aglycone. Compound 3 was acetylated with Ac₂O/pyridine at room temperature to afford its triacetate, which was identical with an acetate prepared from periplocoside E (11)³ in the same manner. Accordingly, 3 was concluded to be Δ^5 -pregnene- 3β ,17 α ,20(S)-triol 20-O-(β -D-digitalopyranosyl-(1 \rightarrow 4)- β -D-cymaropyranosyl-(1 \rightarrow 4)- β -Dcymaropyranosyl-(1 \rightarrow 4)- β -D-cymaropyranosyl-(1 \rightarrow 5)-3,7-dideoxy-4-O-methyl- α -D-gluco-2heptulopyranosyl-(2—4)-dioxy-(1 \rightarrow 3)- β -D-canaropyranoside).

Periplocoside O (4), colorless powder, mp 103—106 °C, $[\alpha]_D^{20} - 84.0^\circ$ (c = 0.05, MeOH) gave 5 in acid hydrolysis as described above. Compound 4 showed two anomeric signals due to a canarose analog (δ 4.58 and 100.80) and 4,6-dideoxy-3-O-methyl- Δ^3 -2-hexosulose (δ 5.05 and 97.32) in the ¹H- and ¹³C-NMR spectra, and glycosylation shifts at C-3 and C-20 of the aglycone were recognized. In addition, its NMR spectra exhibited characteristic signals due to a dioxymethylene group (δ 4.72 and 96.98) and one more methoxyl group (δ 3.43 and 55.73) in comparison with those of periplocoside M (**12**),³⁾ and the carbon signals corresponding to C-3 and C-4 of the canarose were shifted +9.8 and -2.1 ppm, respectively. Therefore, it was presumed that a methoxymethyl group was linked to the C-3 hydroxyl group of the canarose. This unique canarose analog might be produced by peroxide bond cleavage between canarose and heptulose in the sugar chains of periplocosides.³⁾ Consequently, **4** was concluded to be Δ^5 pregnene-3 β ,17 α ,20(S)-triol 3-O-(4',6'-dideoxy-3-O-methyl- $\Delta^{3'}$ -D-2'-hexosuloside) 20-O-(3-O-methoxymethyl- β -D-canaropyranoside).

Experimental

All melting points were recorded on a Yanagimoto MP-3 micro melting point apparatus and are uncorrected. The NMR spectra were taken on a Bruker AM 400 instrument at 400 MHz (¹H) and 100.6 MHz (¹³C) and chemical shifts are given as δ (ppm) with tetramethylsilane (TMS) as an internal standard (s, singlet; d, doublet; t, triplet; q, quartet). MS were measured on a JEOL JMS DX-303 spectrometer.

The following solvent systems were used for TLC on 0.25 mm Kieselgel F_{254} (Merck) plates: solvent 1, CHCl₃-MeOH (96:4); solvent 2, CHCl₃-MeOH-H₂O (7:3:1) lower phase; solvent 3, CHCl₃-MeOH (9:1); solvent 4, CHCl₃-MeOH (2:1) and solvent 5, EtOAc. Each spot on a TLC plate was detected by spraying 10% H₂SO₄ and heating the plate.

Isolation of S-16, 17, 18 and 19—As reported in the previous paper,^{1–3)} the CM-1 fraction (20g) was subjected to chromatography on silica gel and eluted with CHCl₃–MeOH (9:1) and (5:1), respectively. The obtained CHCl₃–MeOH (5:1) fraction was submitted to high performance liquid chromatography (HPLC) on RP-18 column and eluted with MeOH–H₂O (8:2) and (7:3) to furnish S-16 (25 mg), S-17 (10 mg), S-18 (12 mg) and S-19 (7 mg), named periplocosides J, K, F and O, respectively.

Periplocoside J (1)—Colorless powder, mp 178—181 °C, $[\alpha]_{D}^{20} + 24.13^{\circ}$ (c = 0.12, MeOH). SIMS m/z: 1224 $[M(C_{61}H_{100}O_{2,3}) + Na + H]^+$, 1240 $[M + K + H]^+$. ¹H-NMR (CDCl₃) δ : 0.73 (3H, s, 18-CH₃), 0.97 (3H, s, 19-CH₃), 1.23 (3H, d, J = 6.2 Hz, cym-6), 1.25 (3H, d, J = 6.1 Hz, digt-6), 1.28 (3H, d, J = 6.3 Hz, 21-CH₃), 1.29 (3H, d, J = 6.5 Hz, hep-7), 1.31 (3H, d, J = 6.0 Hz, can⁻6), 1.32 (3H, d, J = 6.0 Hz, can-6), 1.35 (3H, d, J = 6.5 Hz, dig-6), 2.96 (1H, dd, J = 9.5, 8.6 Hz, can⁻4), 3.44, 3.46, 3.51 (each 3H, s, OMe), 3.68 (1H, dd, J = 9.4, 7.8 Hz, dig-2), 4.28 (1H, d, J = 7.5 Hz, hep-1a), 4.75 (1H, dd, J = 9.8, 1.8 Hz, cym-1), 4.99 (1H, dd, J = 9.7, 1.9 Hz, digt-1), 5.13 (1H, d, J = 7.5 Hz, hep-1b), 5.34 (1H, m, 6-H).

Partial Hydrolysis of Periplocoside J (1)—A solution of 1 (20 mg) in 0.001 N H₂SO₄-MeOH (2 ml) was stirred for 30 min at room temperature. The reaction mixture was diluted with H₂O (10 ml) and extracted with EtOAc. The extract showed the presence of Δ^5 -pregnene-3 β , 17 α , 20(S)-triol (5) (solv. 3, Rf=0.51, solv. 5, Rf=0.50), periplocoside N (7) (solv. 3, Rf=0.34, solv. 5, Rf=0.23), and methyl β -D-digitalopyranosyl-(1 \rightarrow 4)- β -D-cymaropyranoside (6) (solv. 3, Rf=0.47, solv. 5, Rf=0.16) on TLC, and gave 8 (1.5 mg), which was purified by means of silica gel column chromatography using EtOAc as the eluent.

Hydrolyzate 8—Colorless powder, mp 253—256 °C, $[\alpha]_{D}^{20}$ + 28.5° (c = 0.05, CHCl₃). ¹H-NMR (CDCl₃) δ : 1.22 (3H, d, J = 6.2 Hz, cym-6), 1.24 (3H, d, J = 6.1 Hz, digt-6), 1.27 (3H, d, J = 6.0 Hz, can-6), 1.34 (3H, d, J = 6.5 Hz, dig-6), 1.44 (3H, d, J = 6.45 Hz, lactone-6), 2.72 (2H, t, J = 4.0 Hz, lactone-2), 2.95 (1H, dd, J = 9.6, 8.5 Hz, can-4), 3.39, 3.42, 3.46 (each 3H, s, OMe), 4.39 (1H, d, J = 6.5 Hz, dig-1), 4.54 (1H, dd, J = 9.6, 1.7 Hz, can-1), 4.75 (1H, dd, J = 9.8, 1.8 Hz, cym-1), 4.99 (1H, dd, J = 9.7, 1.8 Hz, digt-1).

Acetylation of 8 — The acetylation of 8 was carried out in the usual way with Ac₂O/pyridine to give the acetate as a colorless powder. ¹H-NMR (CDCl₃) δ : 1.16 (3H, d, J=6.2 Hz, cym-6), 1.21 (3H, d, J=6.1 Hz, digt-6), 1.24 (3H, d, J=6.0 Hz, can-6), 1.26 (3H, d, J=6.5 Hz, dig-6), 1.43 (3H, d, J=6.4 Hz, lactone-6), 2.05, 2.06, 2.10, 2.15 (each 3H, s, OAc), 2.71 (2H, br d, lactone-2), 3.33, 3.39, 3.43 (each 3H, s, OMe), 4.41 (1H, d, J=7.8 Hz, digt-1), 4.55 (1H, dd, J=9.6, 1.7 Hz, can-1), 4.76 (1H, dd, J=9.8, 1.8 Hz, cym-1), 4.85 (1H, dd, J=9.7, 1.8 Hz, digt-1), 5.09 (1H, dd, J=9.8, 8.0 Hz, dig-2), 5.31 (1H, br d, dig-4).

Periplocoside K (2)—Colorless powder, mp 208—212 °C, $[\alpha]_D^{20} - 4.76^{\circ}$ (*c*=0.08, MeOH). SIMS *m/z*: 1363 $[M(C_{68}H_{108}O_{26}) + Na]^+$, 1379 $[M + K]^+$. ¹H-NMR (CDCl₃) δ : 0.72 (3H, s, 18-CH₃), 0.97 (3H, s, 19-CH₃), 1.23 (3H, d, *J*=6.2 Hz, cym-6), 1.25 (3H, d, *J*=6.1 Hz, digt-6), 1.28 (3H, d, *J*=6.3 Hz, 21-CH₃), 1.29 (3H, d, *J*=6.5 Hz, hep-7), 1.31 (3H, d, *J*=6.0 Hz, can '-6), 1.33 (3H, d, *J*=6.0 Hz, can-6), 1.35 (3H, d, *J*=6.5 Hz, dig-6), 1.51 (3H, d, *J*=6.8 Hz, 6'-CH₃), 2.96 (1H, dd, *J*=9.6, 8.6 Hz, can '-4), 3.44, 3.46, 3.51, 3.63 (each 3H, s, OMe), 3.67 (1H, dd, *J*=9.4, 7.8 Hz, dig-2), 4.28 (1H, d, *J*=7.8 Hz, dig-1), 4.54 (1H, dd, *J*=9.6, 1.7 Hz, can-1), 4.57 (1H, dd, *J*=9.6, 1.7 Hz, can'-1), 4.73 (1H, d, *J*=7.5 Hz, hep-1a), 4.75 (1H, dd, *J*=9.8, 1.8 Hz, cym-1), 4.99 (1H, dd, *J*=9.7, 1.8 Hz, digt-1), 5.05 (1H, s, 1'-CH₃), 5.13 (1H, d, *J*=7.5 Hz, hep-1b), 5.35 (1H, m, 6-H), 5.78 (1H, d, *J*=3.0 Hz, 4'-H).

Periplocoside F (3)—Colorless powder, mp 195—198 °C, $[\alpha]_D^{20} + 8.1^\circ$ (c = 0.07, MeOH). ¹H-NMR (CDCl₃) δ : 0.72 (3H, s, 18-CH₃), 1.00 (3H, s, 19-CH₃), 1.20, 1.22, 1.25 (each 3H, d, J = 6.3 Hz, cym-6), 1.29 (6H, d, J = 6.5 Hz, 21-CH₃ and hep-7), 1.31 (3H, d, J = 6.0 Hz, can-1), 1.35 (3H, d, J = 6.5 Hz, dig-6), 3.43 (×2), 3.44 (×2), 3.52 (each 3H, s, OMe), 4.28 (1H, d, J = 7.7 Hz, dig-1), 4.57 (1H, dd, J = 9.2, 1.4 Hz, can-1), 4.74 (1H, d, J = 7.5 Hz, hep-1a), 4.76, 4.77, 4.92 (each 1H, dd, J = 9.5, 1.5 Hz, cym-1), 5.13 (1H, d, J = 7.5 Hz, hep-1b), 5.35 (1H, m, 6-H).

Acetylation of Periplocosides E (11) and F (3)—The acetylations of 11 and 3 (5 mg) were carried out in the usual way with Ac₂O/pyridine, and afforded the same acetate as a colorless powder. ¹H-NMR (CDCl₃) δ : 0.72 (3H, s, 18-CH₃), 1.01 (3H, s, 19-CH₃), 1.17, 1.19, 1.21 (each 3H, dd, J=6.5 Hz, cym-6), 1.23 (3H, d, J=6.5 Hz, dig-6), 1.29 (6H, d, J=6.5 Hz, 21-CH₃ and hep-7), 1.31 (3H, d, J=6.0 Hz, can-6), 2.06, 2.10, 2.15 (each 3H, s, -OAc), 3.32, 3.42, 3.43, 3.44, 3.45 (each 3H, s, OMe), 4.41 (1H, d, J=8.0 Hz, dig-1), 4.57 (1H, dd, J=9.5, 1.5 Hz, can-1), 4.74 (1H, d, J=7.5 Hz, hep-1a), 4.76 (×2), 4.92 (each 1H, dd, J=9.6, 1.5 Hz, cym-1), 5.10 (1H, dd, J=10, 8.0 Hz, dig-2), 5.13 (1H, d, J=7.5 Hz, hep-1b), 5.30 (1H, dd, J=3.2, 1.2 Hz, dig-4), 5.38 (1H, m, 6-H).

Acid Hydrolysis of Periplocosides J (1), K (2) and F (3)—Each sample (5 mg) was hydrolyzed with 0.05 N H₂SO₄ in 50% aqueous MeOH (2 ml) at 80 °C for 1 h. Each reaction mixture was diluted with water and the MeOH was evaporated off *in vacuo* at room temperature. The aqueous residue was extracted with CHCl₃ (× 3) and the CHCl₃ layer was washed with water. After removal of the organic solvent, the residue was purified by means of silica gel column chromatography to give Δ^5 -pregnene 3β , 17α , 20(S)-triol (5) or Δ^5 -pregnene 3β , 17α , 20(S)-triol 3-O-(4', 6'-dideoxy-3'-O-methyl- Δ^3 '-D-2'-hexosuloside) (10).¹¹ The aqueous layer was neutralized with Amberlite IRA-94, and evaporated to dryness *in vacuo*. The residue showed the presence of cymarose (solv. 2, Rf=0.62; solv. 3, Rf=0.45), canarose (solv. 2, Rf=0.37; solv. 4, Rf=0.26); digitalose (solv. 2, Rf=0.30; solv. 3, Rf=0.11) and digitoxose (solv. 2, Rf=0.35; solv. 3, Rf=0.34) on silica gel TLC in comparison with authentic samples.

Periplocoside O (4)—Colorless powder, mp 103—106 °C, $[\alpha]_{D}^{20}$ – 84.0° (*c* = 0.05, MeOH). ¹H-NMR (CDCl₃) δ :

 $0.73 (3H, s, 18-CH_3), 1.01 (3H, s, 19-CH_3), 1.30 (3H, d, J=6.5 Hz, 21-CH_3), 1.51 (6H, d, J=6.0 Hz, 6'-CH_3 and can 6), 3.49 (3H, s, OMe), 3.63 (3H, s, 3'-OMe), 3.74 (1H, q, J=6.5 Hz, 20-H), 4.58 (1H, dd, J=10, 1.5 Hz, can-1), 4.72 (2H, s, -OCH_2O-), 5.05 (1H, s, 1'-H), 5.78 (1H, d, J=3.0 Hz, 4'-H). The acid hydrolysis of$ **4**in the same manner as described above gave**5**.

Detection of Peroxides in Sugar Chains¹¹⁾—On TLC examination, each peroxide solution in chloroform revealed a characteristic purple spot when sprayed with a solution of N, N-dimethyl-p-phenylenediamine dihydrochloride (0.5 g) in a mixture of methanol (128 ml), water (25 ml) and glacial acetic acid (1 ml).

References and Notes

- 1) H. Itokawa, J. P. Xu, and K. Takeya, Chem. Pharm. Bull., 35, 4524 (1987).
- 2) H. Itokawa, J. P. Xu, K. Takeya, K. Watanabe, and J. Shoji, Chem. Pharm. Bull., 36, 982 (1988).
- 3) H. Itokawa, J. P. Xu, and K. Takeya, Chem. Pharm. Bull., 36, 2084 (1988).
- 4) H. Itokawa, J. P. Xu, and K. Takeya, Phytochemistry, 27, 1173 (1988).
- 5) S. Kawanishi, S. Sakuma, H. Okino, and J. Shoji, Chem. Pharm. Bull., 20, 93 (1972).
- 6) H. Ishizone, S. Sakuma, S. Kawanishi, and J. Shoji, Chem. Pharm. Bull., 20, 2402 (1972).
- 7) A. Sanner and H. Allgeier, Helv. Chim. Acta., 52, 166 (1969).
- 8) S. Kawanishi, R. Kasai, S. Sakuma, and J. Shoji, Chem. Pharm. Bull., 25, 2055 (1977).
- 9) While comparing the structures of periplocosides A and E^{2,3} with those of periplosides C and A, as proposed by Oshima *et al.*,¹⁰ isolated from the same plant, the combining form between heptulose and canarose of the corresponding sugar chain in previous papers^{2,3} was shown to be of a different type, in spite of the same ¹H-NMR signal patterns, which is noteworthy.
- 10) Y. Oshima, T. Hirota, and H. Hikino, Heterocycles, 26, 2093 (1987).
- 11) E. Kuappe and D. Peteri, Z. Anal. Chem., 190, 386 (1962).